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Abstract

Dialogue state tracking is essential and useful001
in building today’s dialogue systems by help-002
ing to extract useful information about a dia-003
logue, especially from user utterances. The004
2021 novel hybrid Knowledge-Aware Graph-005
Enhanced GPT-2 (KAGE-GPT2) architecture006
augments GPT-2 with cross-domain inter-slot007
relationships and dependencies learned from008
Graph Attention Networks that could otherwise009
be lost in sequential prediction. By nature, the010
MultiWOZ dialogue state tracking dataset is011
a multi-domain dataset. KAGE-GPT2 was re-012
ported to have improvements in dialogue state013
tracking performance in MultiWOZ 2.0 against014
strong baseline models. In this paper, we015
evaluate the strong KAGE-GPT2 novel hybrid016
model on specific individual target domains017
in MultiWOZ and analyze the results against018
that obtained from evaluating the model on the019
multi-domain problem. Since KAGE-GPT2020
was trained and evaluated on MultiWOZ 2.0,021
which has since been shown to have errors and022
substantial noise, we also compare the results023
of model evaluation on MultiWOZ 2.1, an up-024
dated version of the dataset that addressed these025
errors and noise.026

1 Introduction027

In a dialogue, there is a large amount of informa-028

tion being exchanged in a single sentence. When029

a user utters a sentence such as, "There is a restau-030

rant called No Thai near State Street that sells031

meals for $10 to $12," we can glean a lot of in-032

formation, namely entity attributes called “slots”033

(Budzianowski et al., 2018), from this—such as034

the restaurant name, the restaurant location, and035

the price range of meals. This goes for any sen-036

tence in the domain of restaurants. In general, we037

would like a dialogue system to be able to keep038

track of critical slot-value pairs such as the ones039

defined above. A slot is defined to be an entity at-040

tribute. We call our collection of slots our ontology.041

For the single domain problem, a dialogue state 042

for that utterance is defined as a set of (slot, tuple) 043

pairs. For the example utterance, the dialogue state 044

is given by (restaurant name, No Thai), (restau- 045

rant location, State Street), (price range, $10 to 046

$12). For the multi-domain problem, we track the 047

domain associated with each dialogue state. We 048

define the multi-domain static-ontology dialogue 049

state tracking problem as follows: given a user- 050

system dialogue of user and system utterances and 051

a static ontology, output the dialogue state—a set of 052

(domain, slot, value) tuple—for each user utterance. 053

Dialogue state tracking is beneficial for building 054

multi-domain task-oriented dialogue systems, for 055

example, generating system utterances in response 056

to user utterances. 057

GPT-2 augmented with relational (Lin et al., 058

2021) representations derived from Graph Atten- 059

tion Networks have been shown to produce high 060

joint1 (54.86%) and slot2 (97.47%) accuracy on the 061

MultiWOZ 2.0 dataset (Lin et al., 2021), by build- 062

ing on Dialogue State Tracking via Knowledge- 063

Aware Graph Enhanced Question Answering (Zhou 064

and Small, 2019) and addressing the limitations in 065

accurately predicting slot values that occur early 066

on arising from GPT-2’s causal-based modelling 067

(Lin et al., 2021). 068

Throughout this project, we attempted to im- 069

plement several methods to improve the KAGE- 070

GPT2 model with varying degrees of success. Fur- 071

thermore, we analyzed the performance of Lin et 072

al’s pre-trained KAGE-GPT2 model to investigate 073

dialogue-domain specific performance and cross- 074

dialogue domain performance on the newer3 Multi- 075

1Slot Accuracy measures the ratio of successful slot value
predictions among all the slots of each dialogue turn in ground-
truth (Lin et al., 2021).

2Joint Goal Accuracy compares the predicted belief state
to the ground truth at every dialogue turn. The output is
considered correct only if all the predicted slot values exactly
match the ground truth values (Lin et al., 2021).

3Compared to MultiWOZ 2.0. At the time of writing, the
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WOZ 2.1 dataset.076

2 Related work077

2.1 Slot-Utterrance Matching for Universal078

and Scalable Belief Tracker079

Lee et al. developed a universal and scalable belief080

tracker wherein one single belief tracker can serve081

to handle any domain and slot type. They named082

their solution Slot-Utterrance Matching for Uni-083

versal and Scalable Belief Tracker or SUMBT for084

short. SUMBT first encodes system and user utter-085

ances pairs using BERT as a contextual semantics086

encoder. SUMBT then uses multi-head attention087

for the attention mechanism to retrieve relevant in-088

formation corresponding to the domain-slot-type089

from the utterances. Finally, as this model deals090

with turn-level predictions, the model needs to in-091

corporate previous belief states into generating the092

current new belief states. The authors incorporate093

an RNN whose inputs are the aforementioned out-094

put from the attention layer and the previous belief095

states, and the output of this RNN is a vector that is096

fed through a normalization layer, and whose final097

output is close to the target slot values semantics098

vector.099

The authors trained and tested SUMBT on100

WOZ 2.0 corpus, yielding a joint accuracy of101

0.910, which surpassed the baseline methods:102

BERT+RNN, a model without a contextual en-103

coding layer, and BERT+RNN+Ontology which104

takes advantage of an ontology-utterance match-105

ing network that performs element-wise multiplica-106

tions between the encoded ontology and utterances.107

2.2 Knowledge-Aware Graph-Enhanced108

GPT-2 (KAGE-GPT2)109

KAGE-GPT2 is a hybrid model inspired by the110

graph-based approach of Dynamic Knowledge111

Graph-Enhanced Dialogue State Tracking Ques-112

tion and Answering (DSTQA) that employs a113

dynamically-evolving knowledge graph to learn114

relationships between (domain, slot) pairs explic-115

itly. The model takes a three-step approach at each116

user utterance turn: (1) pass the dialogue history117

and a serialization of the static ontology (as a string118

of (slot, <placeholder>) pairs) to GPT-2 to generate119

features for all possible domain-slots and values in120

the static ontology; (2) feed the resultant features121

into a Graph Attention Network (GAT) to learn122

latest version is MultiWOZ 2.2 (Zang et al., 2020).

relationships between (domain, slot) pairs and val- 123

ues similar to DSTQA; and (3) feed the utterance 124

string to the GPT-2 model to predict the dialogue 125

state, incorporating the GAT features learned in the 126

previous step (Lin et al., 2021). Adding this inter- 127

mediate step of passing through a GAT mitigates 128

the decrease in performance caused by GPT-2’s 129

causality. Also, it has been shown to capture inter- 130

slot dependencies, improve predictions at interme- 131

diate dialogue turns, and improve the predictions 132

of correlated slots. 133

3 Dataset 134

The Multi-Domain Wizard of Oz (MultiWOZ) 135

dataset is a fully-labelled collection of human- 136

human written conversations spanning multiple 137

domains and topics. It is the first widely used 138

multi-domain dialogue dataset for the DST task 139

(Balaraman et al., 2021). It comprises dialogues in 140

seven domains: Attraction, Hospital, Police, Ho- 141

tel, Restaurant, Taxi, and Train (the latter four of 142

which are extended domains that include the sub- 143

task Booking), collected using the Wizard-of-Oz 144

approach (Budzianowski et al., 2018). The dia- 145

logues cover between one and five domains per 146

dialogue, greatly varying in length and complex- 147

ity. 10438 dialogues were released, of which 3406 148

are single-domain, and 7,032 are multi-domain. 149

At about 10 thousand dialogues, it is considerably 150

larger than all previous annotated task-oriented cor- 151

pora. 152

Since its first release, MultiWOZ has gone 153

through several iterations. In particular, since Mul- 154

tiWOZ 2.0 that KAGE-GPT2 used, a new schema 155

has been added, slot values standardized, annota- 156

tion errors corrected, span annotations standard- 157

ized, active intents and requested slots for each 158

user turn annotated, and user and system actions 159

fixed and added in MultiWOZ 2.2 (Zang et al., 160

2020). Performances of state-of-the-art models 161

like TRADE, SGD-baseline, and DS-DST are simi- 162

lar upon the updates and is a compelling reason for 163

using the cleaned MultiWOZ 2.2 dataset for fairer 164

comparison between our proposed GPT-3 model 165

and KAGE-GPT2. 166

4 Approaches 167

4.1 Adapting and Substituting the 168

transformer model 169

As mentioned in §2.2, Lin et al. utilized GPT-2 170

to obtain the value of the embedding for each slot 171

2



Figure 1: Training workflow of the KAGE-GPT2 model proposed and built by the KAGE-GPT2 authors (Lin et al.,
2021). From the authors: (1) the pre-extraction layer is where the model extracts domain-slot embeddings (e.g.,
hotel-name) from dialogue history; (2) the GAN layer is where inter-slot relations are learned from the domain-slot
embeddings passed from (1); (3) generation layer is where the updated domain-slot features are fed into GPT2 to
generate the predicted dialogue state of slot values causally.

name in the first step of the model; in the third step172

of the model, the GPT-2 transformer is used again173

to obtain an embedding of the combined user’s174

and system’s utterances. We hypothesized that sub-175

stituting the transformer model with a similar but176

more sophisticated one may let the model generate177

a ‘richer’ and more ‘meaningful’ embedding both178

for the Graph Attention Network in step 2 and the179

final prediction step.180

We considered and have attempted to adapt Lin181

et al.’s model with the variants of GPT models with182

various complexities as in table 1.183

# of layer # of parameters
GPT-3 96 175 Billion
GPTNeoX 44 20 Billion
GPT-2-XL 48 1557 Million
GPT-2 Large 36 774 Million
GPT-2 Medium 24 1558 Million
GPT-2 12 117 Million

Table 1: GPT models with various complexities that we
attempted to train on the multi-domain problem.

4.2 Analysis of Dialogue State Tracking for 184

Specific Domains 185

We recognize that the KAGE-GPT2 method per- 186

formed decently well for its time as it achieved 187

a joint accuracy of 54.86% and a slot accuracy 188

of 97.47% (Lin et al., 2021). These results were 189

produced when the model was trained and tested 190

across five domains: attraction, hotel, restaurant, 191

taxi, and train. We individually tested the author’s 192

pre-trained GPT-2 model against each of the five 193

aforementioned domains. The results received 194

from each domain were compared to results tested 195

against all domains. The goal of these experiments 196

was to find if the pre-trained GPT-2 model performs 197

better on certain specific domains than others and if 198

the model performs better when restricted to an in- 199

dividual domain than when run on a multi-domain 200

ontology. 201

We tested the author’s pre-trained GPT2 model 202

on two subsets of dialogues from the original test 203

dataset to do this domain-specific analysis for each 204

of the five experimental domains. The first subset 205

was dialogues classified as being in exactly and 206

only the target domain. In contrast, the second 207

was dialogues classified as being in the specified 208
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domain and zero or more other non-target domains.209

Support for two new command-line argu-210

ments, -test_domain and -test_con-211

sider_other_domains, was added to the212

evaluation script. Specifying a target domain in213

evaluation would modify the slots passed to the214

training algorithm to be learned and evaluated and215

trim the test dataset to only include the previously216

mentioned subset of dialogues for evaluation.217

4.3 Substituting MultiWOZ 2.0 with218

MultiWOZ 2.1219

MultiWOZ 2.1 corrects four main dialogue state220

error types in the original MultiWOZ 2.0 dataset221

that in practice, has been found to have substantial222

noise (Eric et al., 2019)—delayed annotations of223

slot values one or more turns after an initial appear-224

ance in user utterances, multi-annotations of slot225

values where only one is correct, mis-annotations226

of slot values, typographically-inconsistent anno-227

tations, and forgotten slot values that never occur228

in the dialogue state despite being mentioned in229

user utterance(s). Additionally, the newer dataset230

includes annotations for user utterances instead of231

the existing annotations for system dialogue acts.232

The MultiWOZ 2.1 authors found consistent233

drops in the test set joint state accuracies for var-234

ious Joint State Tracker models (e.g., Flat Joint235

State Tracker, Hierarchical Joint State Tracker, and236

TRADE) due to the newer dataset causing models237

to generate more incorrect slot value predictions238

when the target label is none or dontcare. In this239

paper we compared the results obtained from eval-240

uating Lin et al.’s KAGE-GPT2 pre-trained model241

on individual domains, unions of domains (with242

a specified target domain), and the original multi-243

domain dataset, on the MultiWOZ 2.0 dataset, to244

results obtained from the evaluation on the Mul-245

tiWOZ 2.1 dataset. We analyzed the differences246

to see if they matched the MultiWOZ 2.1 authors’247

findings.248

The authors also found the largest slot accuracy249

decrease from MultiWOZ 2.0 to MultiWOZ 2.1250

occurred for the restaurant-name slot. In this251

paper, we also evaluated the KAGE-GPT2 model252

on the individual domain of restaurant, and thus253

compared the results obtained from the original254

MultiWOZ 2.0 dataset to that obtained from the255

newer data-set to see if these same discrepancies256

are apparent on this model.257

5 Evaluation and Results 258

The two performance metrics used are joint goal 259

accuracy and slot accuracy. Joint goal accuracy, or 260

joint accuracy, is computed by assigning a value of 261

1 or 0 to each dialogue turn depending on whether 262

the predicted dialogue state (also called a belief 263

state) matches the ground-truth belief state—that 264

is, whether all slot-value predictions of a dialogue 265

turn match all slot-value pairs in the ground-truth 266

belief state—then computing the average of these 267

boolean indicator values across all dialogue turns 268

for a dialogue. Slot accuracy is computed at a finer- 269

grained level by computing the ratio of correct slot- 270

value predictions of each turn, then computing the 271

average of these ratios. 272

5.1 Evaluation and Results from the 273

Transformer Substitution Experiments 274

In essence, we drastically underestimated the effort 275

and resources needed to substitute these models to 276

adapt the original paper authors’ 8000-line code 277

base to work with these new models effectively. 278

Unfortunately, we did not yield many satisfac- 279

tory results in this arduous process. We initially 280

considered using GPT-3 as mentioned in our origi- 281

nal project proposal. However, the plan to substi- 282

tute GPT-2 to GPT-3 was unfortunately put on halt 283

as we realized that Huggingface does not provide 284

direct support to embed GPT-3 in our codebase 285

as it was unbeknownst to us that GPT-3 is not an 286

open-source model. This would require us to use 287

OpenAI’s custom API, which would require us to 288

rewrite almost the majority of the 8000-line code 289

base, which we ultimately decided was not eco- 290

nomical. 291

Hence, we focused on finding an alternative 292

model to GPT-3. We found out more about GPT- 293

NeoX, an alternative model with roughly 20 billion 294

trainable parameters. We thought this would be a 295

model with ‘decent’ complexity. Even though the 296

number of parameters GPTNeoX has is one degree 297

of magnitude less than GPT-3, GPTNeoX still has 298

about two degrees of magnitude more parameters 299

than our baseline GPT-2 model, which we thought 300

would ultimately lead to improved performance. 301

However, we encountered several issues attempt- 302

ing to conform the author’s codebase to utilize 303

GPTNeoX. The following is a non-exhaustive list 304

of problems encountered during our development 305

process: 306
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5.1.1 Conflicting requirements.txt307

Provided by the Authors308

We naturally started with using the author’s Github309

repository. The first issue we encountered was cor-310

rectly setting up a functional python environment311

using the author-provided requirements.txt.312

First, the author did not specify which version of313

Python, the training environment that was origi-314

nally used, and whether the environment should be315

set up in conda or pip. Thus, we created a per-316

mutation of these setup environments by choosing317

a specific Python version, one of Python 3.6.8, 3.7,318

3.8, 3.9, and 3.10, a specific package manager, e.g.319

conda or pip. This was worsened by the fact that320

we had to circumnavigate different restrictions on321

the various computation platform that we are lim-322

ited to, namely local Mac environments, Google323

Colabatory, CAEN, and Great Lakes Slurm HPC324

Clusters, which we further elaborate on in the ‘Re-325

source Limitations’ section. We had to create more326

than 20 conda/pip environments to find a suit-327

able environment for each computation platform.328

However, in every environment that we tried in329

the series of permutations, if we used the author’s330

requirements file unmodified, we would inevitably331

encounter the following issues:332

• There is one specific requirement line named333

pkg-resources==0.0.0. After exten-334

sive research, we concluded that this specific335

requirement is likely to be a bug resulting336

from the authors’ specific Linux distribution337

(Wright, 2016).338

• For whatever reason, notwithstanding the pre-339

vious issue, all of the authors’ requirements340

are specified using ==, which is likely to be341

the result of a pip freeze of the authors’342

local environment. However, this seems to343

have created unnecessarily strict requirements344

such that the most recent versions of pip can345

no longer resolve the dependencies conflicts,346

as shown in the figure below.347

Figure 2: An example of various package conflicts we
had to manually resolve one by one in the beginning
stage of the setting up relevant environments

This is not just the only conflict but one 348

amongst the tens of dozens of conflicts we 349

encountered along the way. Thus, we had to 350

make assumptions about which packages are 351

necessary to be kept, such as torch, ten- 352

sorboard, transformers to use Hug- 353

gingface’s library functions. We had to keep 354

trying to fail to see which versions of which 355

packages were essential to the execution of 356

the program while not breaking CUDA and 357

transformers compatibility. As men- 358

tioned, the discrepancies between the differ- 359

ent versions will be one of our main struggles 360

throughout this project. 361

• These conflicts may surface differently on dif- 362

ferent computation platforms, further increas- 363

ing the confusion and difficulty associated 364

with the setup process. For instance, it is eas- 365

ier to set up CUDA on Great Lakes than on 366

Google Colab, as every module needs to be 367

loaded ‘from scratch". In contrast, an initial 368

uninstallation process needs to take place on 369

Google Colab before using wget to obtain an 370

archived version of Pytorch with older CUDA 371

compatibility. 372

5.1.2 Deprecation of Certain Huggingface 373

Functions 374

One of the other main issues that we experienced 375

was the need to deal with the discrepancy caused 376

by the difference in the version of the trans- 377

formers libraries used by the author, 3.5.1, 378

which is 25 version releases behind the latest 379

version 4.5.1, which enables us easier access to an 380

implementation of the GPTNeoX model. However, 381

as transformers library iterated, the code file 382

structures shifted around, and many functions were 383

renamed or removed as specific implementation 384

details in library functions changed. In the latest 385

4.5.1 version of transformers, two functions 386

were called in the paper authors’ code-base in their 387

KAGE-GPT2 model file, specifically _init_- 388

sequence_length_for_generation, and 389

_update_seq_length_for_generation 390

were removed from the GenerationMixin 391

class in transformers/src/transform- 392

ers/generation/utils.py which are 393

inherited from the general class for pre-trained 394

models. We had to trace through the source code 395

function call after function call to investigate the 396

best way to fix such compatibility issues, which 397
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may result in further knock-on effects. We ap-398

pended those two aforementioned functions to the399

original implementation of the KAGE_GPT2.py400

model (tra, 2020).401

Unfortunately, even though our training script402

seemed to be able to execute normally when gener-403

ating the validation results, for unknown reasons,404

the transformers based on the newer 4.25.1 version405

cannot reliably generate a slot-value pair in the406

eventual output layer. However, we were eventu-407

ally able to fix such issues only in environments408

installed with the older 3.5.1 version of the trans-409

former. By using differential testing techniques, we410

concluded that presumably unknown latent changes411

to the Huggingface library caused the discrepancy412

in the output dialogue generation.413

We realized that since most of the changes in414

the library code were not within our purview, it415

would not be worth the risk and time to hack the416

code-base further to work with transformers417

version 4.25.1. However, this meant that we had418

to revert to the authors’ transformers versions419

which meant that we could no longer use the GPT-420

NeoX model. Subsequently, we looked for more421

available native models on version 3.5.1, which we422

would not need to implement from scratch. Hence,423

as mentioned in §4.1, we experimented with vari-424

ants of GPT-2 models: GPT-2-Extra-Large, GPT2-425

Large, and GPT2-Medium as the next set of targets426

of the transformer substitution experiments.427

5.1.3 Resource Limitations428

We faced quite some severe limitations with re-429

sources throughout the project. Unfortunately, due430

to the aforementioned difficulties in getting a cus-431

tom model to run, we did not have too much un-432

congested time using the Great Lakes computing433

cluster. We often had to wait more than 24 hours434

for a simple less-than-1-hour testing script to start435

running. Despite the difficulties, we fully debugged436

the training script on Great Lakes for our experi-437

ments for substituting GPT-2 for other GPT-2 vari-438

ants. However, we encountered an unforeseen dif-439

ficulty in fitting a Large Language Model through440

Great Lakes. We attempted to finetune GPT-2-XL,441

GPT-2 Large models on Great Lakes. However,442

even with a training batch size of 1, a dialogue in443

the MultiWOZ dataset may be too long , the inter-444

mediate variables may not fully fit into the 48GB of445

storage provided by one NVIDIA A40 GPU. Even446

though it is technically possible to utilize multiple447

GPUs while training, it would be nearly impossible448

to have an accurate estimate of how much rewriting 449

needs to be completed to have a fully functional 450

code-base again especially given that older versions 451

of transformers may not be suited to perform 452

multi-GPU tasks. Due to time limitations as well, 453

we were only able to finetune the GPT-2-Medium 454

model, which would fit successfully the memory 455

constraint using a single GPU. 456

Figure 3: Training GPT-2-XL/GPT-2 Large model
would cause a single-GPU instance on Great Lakes to
run out of memory

Meanwhile, we experienced significant lags 457

while attempting to finetune/test our models on 458

Great Lakes. We had to rely on other computing 459

platforms such as Google Colabatory and CAEN. 460

We spent $74.99 on Google Colab to purchase 461

enough computing credits to sanity-test the author’s 462

GPT-2 training and testing script, finetuning the 463

various GPT-2 variant models aforementioned, and 464

running our domain-specific analysis scripts. 465

The difficulty in using a GPU is not the only 466

issue we encountered throughout the experiments 467

and analysis runs. As we also needed to store our 468

trained model, permanent storage devices became 469

a significant issue. The authors’ pre-trained GPT-2 470

model alone took up around 40GB of space, but 471

we were only given around 80GB of storage in 472

our /home directory. Unfortunately, once a user’s 473

/home directory becomes full, it would be impos- 474

sible to perform basically operations. It would 475

even be possible to run rm -rf as presumably 476

removing files would require writing to the file 477

meta-data. It took significant effort to restore the 478

file system to its normal state. As we also wanted 479

to share our work on Great Lakes, we attempted 480

to use the /scratch/eecs595f22_class_- 481

root/eecs595f22_class/shared_- 482

data/ directory, we did not know that there is 483

an implicit storage limit for the shared_data 484

directory, our saved training models along with the 485

authors’ models somehow also exceeded the limit 486

allowed. Hence, we had to migrate our code base 487

again to our individually allocated folder in the 488

/scratch directory. As we also took advantage 489

of Google Colab, we had to utilize the Google 490
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Drive File System. However, Google Drive File491

System is not the best at addressing filename492

conflicts and multiple users writing to the same file493

simultaneously. It was often the case that on the494

GUI, the files and directories may appear to have495

the same name, but in the actual underlying file496

system, they have different names. We learnt this497

the hard way by accidentally deleting the wrong498

version of our modified files.499

5.2 Evaluation with GPT-2-Medium500

Table 2 lists the joint goal and slot accuracies ob-501

tained by evaluating the author’s pre-trained model502

and our adaptation of the GPT2-Medium model on503

the MultiWOZ 2.0 dataset.504

Utilized Models Accuracy (%)
Joint Slot

GPT-2 42 95.70
GPT-2-Medium 34 95.13

Table 2: Results of evaluating pre-trained KAGE-GPT2
model and the KAGE-GPT2-Medium model on the Mul-
tiWOZ 2.0 dataset.

Unfortunately, we only had enough time and505

computational resources to finetune the GPT-2-506

Medium model for one epoch rather than eight507

epochs for GPT-2. However, it seems that the vari-508

ant model has already achieved a similar level of509

accuracy as the regular model. This corroborates510

with the initial goals of these experiments that a511

larger transformer model may yield higher accu-512

racy.513

5.3 Evaluation on Specific Target Domains514

Table 3 lists the joint goal and slot accuracies ob-515

tained by evaluating the author’s epoch eight pre-516

trained model on the MultiWOZ 2.0 data-set for517

dialogues in specific individual target domains. In518

both tables, 3 and 4, the “full dataset, all domains"519

row correspond to running the model on the au-520

thor’s original unmodified code and dataset. In521

table 3, every other row corresponds to evaluating522

the model on dialogue data whose domains field523

contains only and exactly the target domain. In524

contrast, in table 4, every other row corresponds to525

evaluating the model on dialogue data whose do-526

mains field contains at least the target domain, but527

additionally zero or more other non-target domains528

from the list of domains in the static ontology.529

Domain(s) Accuracy (%)
Joint Slot

Full dataset, all domains 42 95.70
Attraction domain 90.70 99.69
Hotel domain 51 96.93
Restaurant domain 64 98.50
Taxi domain 83 99.33
Train domain 70 98.67

Table 3: Results of evaluating pre-trained KAGE-GPT2
model on specific individual target domains on the Mul-
tiWOZ 2.0 dataset.

Domain(s) Accuracy (%)
Joint Slot

Full dataset, all domains 42 95.70
Attraction + other domain(s) 71 98.83
Hotel + other domain(s) 42 95.70
Restaurant + other domain(s) 42 95.70
Taxi + other domain(s) 34 95.13
Train + other domain(s) 78 98.67

Table 4: Results of evaluating pre-trained KAGE-GPT2
model on specific individual target domains and zero or
more other non-target domains on the MultiWOZ 2.0
dataset.

5.4 Evaluation on Updated Dataset 530

Table 5 lists the joint goal accuracies obtained by 531

evaluating the same epoch 8 pre-trained model 532

on both the MultiWOZ 2.0 and MultiWOZ 2.1 533

datasets, for dialogues in specific individual tar- 534

get domains. Table 5 is analogous to table 3 in that 535

each row corresponds to evaluating the model on 536

dialogue data whose domains field contains only 537

and exactly the target domain; while table 6 is anal- 538

ogous to table 4 in that each row corresponds to 539

evaluating the model on dialogue data whose do- 540

mains field contains the target domain and zero 541

or more other non-target domains. 542
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Domain(s) Joint accuracy (%)
WOZ 2.0 WOZ 2.1

Full data, all domains 42 34
Attraction 90.70 86.05
Hotel 51 36
Restaurant 64 53
Taxi 83 64
Train 70 65

Table 5: Joint accuracy results of evaluating pre-trained
KAGE-GPT2 model on specific individual target do-
mains, on MultiWOZ 2.0 versus MultiWOZ 2.1.

Domain(s) Joint accuracy (%)
WOZ 2.0 WOZ 2.1

Full data, all domains 42 34
Attraction + other(s) 71 41
Hotel + other(s) 42 34
Restaurant + other(s) 42 34
Taxi + other(s) 34 25
Train + other(s) 78 42

Table 6: Joint accuracy results of evaluating pre-trained
KAGE-GPT2 model on specific individual target do-
mains and zero or more other non-target domains, on
MultiWOZ 2.0 versus MultiWOZ 2.1.

Tables 8 and 7 are analogous to tables 6 and543

5 in what their rows correspond to, respectively;544

but, instead of joint goal accuracy, they list the slot545

accuracies obtained by evaluating the same epoch546

eight pre-trained model on both the MultiWOZ 2.0547

and MultiWOZ 2.1 datasets.548

Domain(s) Slot accuracy (%)
WOZ 2.0 WOZ 2.1

Full data, all domains 95.70 93.90
Attraction 99.69 99.53
Hotel 96.93 96.17
Restaurant 98.50 98.03
Taxi 99.33 98.5
Train 98.67 98.50

Table 7: Slot accuracy results of evaluating pre-trained
KAGE-GPT2 model on specific individual target do-
mains, on MultiWOZ 2.0 versus MultiWOZ 2.1.

Domain(s) Slot accuracy (%)
WOZ 2.0 WOZ 2.1

Full data, all domains 95.70 93.90
Attraction + other(s) 98.83 97.10
Hotel + other(s) 95.70 93.90
Restaurant + other(s) 95.70 93.90
Taxi + other(s) 95.13 93.67
Train + other(s) 98.67 97.67

Table 8: Slot accuracy results of evaluating pre-trained
KAGE-GPT2 model on specific individual target do-
mains and zero or more other non-target domains, on
MultiWOZ 2.0 versus MultiWOZ 2.1.

6 Discussion 549

In this section, we analyze and discuss the trends 550

and patterns in the obtained data. 551

6.1 Analyzing Evaluation Results with the 552

GPT-2-Medium model 553

In table 2, we observe that the joint and slot ac- 554

curacies obtained with the GPT-2 Medium model 555

are worse than the accuracy given with the GPT-2 556

model. There is a joint accuracy loss of 8% and 557

slot accuracy loss of 0.6% with the GPT-2-Medium 558

model. This is due to the amount of time training 559

on the GPT-2-Medium model. The author’s pre- 560

trained model ran for eight epochs, while the GPT- 561

2-Medium model ran for only one epoch. They 562

both share the same hyperparameters. Since the 563

GPT-2-Medium model does well for only having 564

one epoch of training time and almost having the 565

same slot accuracy, we predict that it’ll surpass the 566

author’s implementation given enough time. We 567

couldn’t run the model long enough due to lack of 568

time, as one epoch takes five hours to train. 569

6.2 Analyzing Evaluation Results on Specific 570

Target Domains 571

6.2.1 Joint Accuracy Less Than Slot Accuracy 572

In both tables 3 and 4, joint goal accuracies are 573

consistently less than slot accuracies for all ex- 574

periments. This trend also aligns with the results 575

observed by the KAGE-GPT2 authors. This is ex- 576

pected since joint goal accuracy has much stricter 577

requirements than slot accuracy, and slot accuracy 578

is, in some sense, simply a finer-grained and more 579

relaxed metric—anywhere a dialogue turn has a 580

slot accuracy ratio less than 100%, it would have a 581

joint accuracy indicator of 0. 582
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6.2.2 Better Performance on Single Target583

Domain584

In the single target domain case, evaluation of the585

epoch eight pre-trained models produced higher586

joint goal and slot accuracies compared to the orig-587

inal multi-domain problem. Joint goal accuracies588

obtained from the evaluation of the five individual589

target domains range of 51-90.70%. They are all590

higher than the 42% joint accuracy on the multi-591

domain dataset, while slot accuracies obtained are592

in the range of 96.93-99.69% and are all higher593

than the 95.70% slot accuracy on the multi-domain594

dataset.595

This is expected because of two reasons: (1)596

the model is effectively being evaluated on a small597

subset test dataset of dialogues, particularly in the598

single target domain case where the size of the599

subsets are much smaller, hence statistically, the600

accuracies are naturally higher since there is much601

less room for the model to make incorrect slot pre-602

dictions; and (2) the restricted single target domain603

problems likely contain much fewer examples of604

none or dontcare, and the model is much more605

likely to make slot-value prediction errors due to606

the possibility of being confused by other domains607

present in multi-domain dialogue examples.608

6.2.3 Better Performance When Excluding All609

Non-Target Domains610

This second reason should also explain why perfor-611

mance in the single target domain case (table 3) is612

better than that in the joint target + other non-target613

domain(s) case (table 4), as seen from the results614

where slot accuracy in the former are in the range615

96.93-99.69% while that in the latter is in the range616

95.13-98.83%; and joint goal accuracy in the for-617

mer are in the range 51-90.70% while that in the618

latter is in the range 34-78%.619

6.2.4 Best and Worst Target Domains620

Evaluation of the model on the attraction domain621

produced the best joint goal and slot accuracies622

across the board, as seen in tables 3 and 4, while623

evaluation of the model on the hotel domain in the624

single target domain case produced the worst joint625

and slot accuracies.626

6.3 Analyzing Evaluation Results on Updated 627

Dataset 628

6.3.1 Lower Performance on MultiWOZ 2.1 629

Across All Domains 630

Tables 5, 6 and 7 illustrate that joint goal and slot ac- 631

curacies obtained from the evaluation of the KAGE- 632

GPT2 model on MultiWOZ 2.1 are lower than on 633

MultiWOZ 2.0 across the board. In the single tar- 634

get domain case, joint accuracies on MultiWOZ 635

2.1 are lower than on MultiWOZ 2.0 across all in- 636

dividual domains, including joint domain sets (i.e., 637

domain sets including the target domain and zero 638

or more non-target domains). On average, however, 639

the disparities between the joint goal accuracies are 640

larger on the joint domain sets (table 6) than on 641

single target domains (table 5). 642

Slot accuracy on MultiWOZ 2.1 was also lower 643

than on MultiWOZ 2.0 across all individual target 644

domains and all joint domain sets, as seen in tables 645

7 and 8 respectively, except in the evaluation results 646

on single target domain of restaurant, as seen in ta- 647

ble 7, with slot accuracy of 98.03% on MultiWOZ 648

2.1 falling short of the slot accuracy of 98.50% on 649

MultiWOZ 2.0. These general results are expected 650

and align with the MultiWOZ 2.1 authors’ find- 651

ings of joint accuracy drops from 2.0 to 2.1 when 652

evaluated on baseline joint state tracker models like 653

Flat Joint State Tracker and Hierarchical Joint State 654

Tracker (Eric et al., 2019). 655

7 Lessons Learned 656

7.1 Taking a Shortcut May actually Result in 657

a Detour 658

The goal of this project was frankly not too am- 659

bitious in my original opinion. We thought we 660

could naively think that we may simply substitute 661

the given GPT-2 Python class in the authors’ code- 662

base by using the GPTNeoX model. In the initial 663

phase of the project, we had this illusion after read- 664

ing through the documentation of both models and 665

found out that their APIs are largely the same. This 666

false sense of ‘security’ was further strengthed by 667

our relative lack of experience dealing with large 668

modern libraries such as transformers. We 669

falsely thought that as long as the APIs resemble 670

each other, the scope of the work shall be relatively 671

limited. 672

In hindsight, perhaps it would have been faster 673

to start a brand new code-base and use more mod- 674

ern libraries to implement what the authors’ model 675
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was, and perform the transformer substitution ex-676

periments. Perhaps with the help of using newer677

libraries, we would have an easier time also at-678

tempting to convert the code base to work with679

multiple GPUs, which is called for to finetune any680

meaningful Large Language models in hindsight.681

While this conclusion is only a hypothesis, it was682

true that we should not have limited the scope of683

the project so earlier on, and fixated on getting the684

substitution experiments to work.685

7.2 Asking for help earlier on686

As we spent a long time simply failing and trying687

to set up the various code bases and environments,688

it did not occur to us that we were rather ‘behind’689

in terms of overall progress. If we reached out690

for suggestions from Professor Chai or other GSIs691

sooner, we would have realized earlier on that we692

should have a set of diversified approaches, such693

as modifying the Graph Attention Network, experi-694

menting with alternative models such as using an695

RNN belief state tracker or just basing our project696

on a different paper.697

7.3 Time and Resource Management698

We severely underestimated the time required to699

create an environment, adapt models, fine-tune,700

test, and analyze the various models. Even though701

we did not start the project that late, we should702

have perhaps started the project one or two weeks703

earlier. In the meantime, we should have used704

our computational resources more efficiently in705

hindsight. If we have realized that Great Lakes has706

a huge backlog, we should have made the case to707

use Google Colab earlier on.708

8 Conclusion709

We faced significant challenges attempting to im-710

prove the existing novel hybrid KAGE-GPT2 dia-711

logue state tracking model to use GPT-3, largely712

due to versioning conflicts and deprecation of criti-713

cal functions in the main transformers library used714

by the original KAGE-GPT2 authors. In light of715

this, we focused our analysis on evaluating the716

KAGE-GPT2 model, trained on a multi-domain717

problem, on specific individual target domains as718

well as these individual domains with zero or more719

other non-target domains (i.e., what we call “joint720

domains"). Our experiments found that the multi-721

domain KAGE-GPT2 model is extremely effective722

on single-domain problems. The model is much723

less likely to make erroneous slot-value predictions 724

when not confused by other non-target domains. 725

This is further substantiated by our results on joint 726

domains having a slightly higher joint goal and slot 727

accuracies compared to the results on single target 728

domains. 729

We also evaluated the pre-trained KAGE-GPT2 730

model on the newer and updated MultiWOZ 2.1 ad- 731

dresses errors and removing noise from the original 732

MultiWOZ 2.0 dataset. Our results in this exper- 733

iment align with findings by the MultiWOZ 2.1 734

authors, with a joint goal and slot accuracies being 735

lower on the newer dataset. 736
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