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Abstract

Dialogue state tracking is essential and useful
in building today’s dialogue systems by help-
ing to extract useful information about a dia-
logue, especially from user utterances. The
2021 novel hybrid Knowledge-Aware Graph-
Enhanced GPT-2 (KAGE-GPT?2) architecture
augments GPT-2 with cross-domain inter-slot
relationships and dependencies learned from
Graph Attention Networks that could otherwise
be lost in sequential prediction. By nature, the
MultiWOZ dialogue state tracking dataset is
a multi-domain dataset. KAGE-GPT?2 was re-
ported to have improvements in dialogue state
tracking performance in MultiwOZ 2.0 against
strong baseline models. In this paper, we
evaluate the strong KAGE-GPT?2 novel hybrid
model on specific individual target domains
in MultiWwOZ and analyze the results against
that obtained from evaluating the model on the
multi-domain problem. Since KAGE-GPT2
was trained and evaluated on MultiwOZ 2.0,
which has since been shown to have errors and
substantial noise, we also compare the results
of model evaluation on MultiWOZ 2.1, an up-
dated version of the dataset that addressed these
errors and noise.

1 Introduction

In a dialogue, there is a large amount of informa-
tion being exchanged in a single sentence. When
a user utters a sentence such as, "There is a restau-
rant called No Thai near State Street that sells
meals for $10 to $12," we can glean a lot of in-
formation, namely entity attributes called “slots”
(Budzianowski et al., 2018), from this—such as
the restaurant name, the restaurant location, and
the price range of meals. This goes for any sen-
tence in the domain of restaurants. In general, we
would like a dialogue system to be able to keep
track of critical slot-value pairs such as the ones
defined above. A slot is defined to be an entity at-
tribute. We call our collection of slots our ontology.
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For the single domain problem, a dialogue state
for that utterance is defined as a set of (slot, tuple)
pairs. For the example utterance, the dialogue state
is given by (restaurant name, No Thai), (restau-
rant location, State Street), (price range, $10 to
$12). For the multi-domain problem, we track the
domain associated with each dialogue state. We
define the multi-domain static-ontology dialogue
state tracking problem as follows: given a user-
system dialogue of user and system utterances and
a static ontology, output the dialogue state—a set of
(domain, slot, value) tuple—for each user utterance.
Dialogue state tracking is beneficial for building
multi-domain task-oriented dialogue systems, for
example, generating system utterances in response
to user utterances.

GPT-2 augmented with relational (Lin et al.,
2021) representations derived from Graph Atten-
tion Networks have been shown to produce high
joint1 (54.86%) and slot? (97.47%) accuracy on the
MultiWOZ 2.0 dataset (Lin et al., 2021), by build-
ing on Dialogue State Tracking via Knowledge-
Aware Graph Enhanced Question Answering (Zhou
and Small, 2019) and addressing the limitations in
accurately predicting slot values that occur early
on arising from GPT-2’s causal-based modelling
(Lin et al., 2021).

Throughout this project, we attempted to im-
plement several methods to improve the KAGE-
GPT?2 model with varying degrees of success. Fur-
thermore, we analyzed the performance of Lin et
al’s pre-trained KAGE-GPT?2 model to investigate
dialogue-domain specific performance and cross-
dialogue domain performance on the newer® Multi-

LSlot Accuracy measures the ratio of successful slot value
predictions among all the slots of each dialogue turn in ground-
truth (Lin et al., 2021).

2Joint Goal Accuracy compares the predicted belief state
to the ground truth at every dialogue turn. The output is
considered correct only if all the predicted slot values exactly
match the ground truth values (Lin et al., 2021).

*Compared to MultiWOZ 2.0. At the time of writing, the



WOZ 2.1 dataset.

2 Related work

2.1 Slot-Utterrance Matching for Universal
and Scalable Belief Tracker

Lee et al. developed a universal and scalable belief
tracker wherein one single belief tracker can serve
to handle any domain and slot type. They named
their solution Slot-Utterrance Matching for Uni-
versal and Scalable Belief Tracker or SUMBT for
short. SUMBT first encodes system and user utter-
ances pairs using BERT as a contextual semantics
encoder. SUMBT then uses multi-head attention
for the attention mechanism to retrieve relevant in-
formation corresponding to the domain-slot-type
from the utterances. Finally, as this model deals
with turn-level predictions, the model needs to in-
corporate previous belief states into generating the
current new belief states. The authors incorporate
an RNN whose inputs are the aforementioned out-
put from the attention layer and the previous belief
states, and the output of this RNN is a vector that is
fed through a normalization layer, and whose final
output is close to the target slot values semantics
vector.

The authors trained and tested SUMBT on
WOZ 2.0 corpus, yielding a joint accuracy of
0.910, which surpassed the baseline methods:
BERT+RNN, a model without a contextual en-
coding layer, and BERT+RNN+Ontology which
takes advantage of an ontology-utterance match-
ing network that performs element-wise multiplica-
tions between the encoded ontology and utterances.

2.2 Knowledge-Aware Graph-Enhanced
GPT-2 (KAGE-GPT2)

KAGE-GPT?2 is a hybrid model inspired by the
graph-based approach of Dynamic Knowledge
Graph-Enhanced Dialogue State Tracking Ques-
tion and Answering (DSTQA) that employs a
dynamically-evolving knowledge graph to learn
relationships between (domain, slot) pairs explic-
itly. The model takes a three-step approach at each
user utterance turn: (1) pass the dialogue history
and a serialization of the static ontology (as a string
of (slot, <placeholder>) pairs) to GPT-2 to generate
features for all possible domain-slots and values in
the static ontology; (2) feed the resultant features
into a Graph Attention Network (GAT) to learn

latest version is MultiWOZ 2.2 (Zang et al., 2020).

relationships between (domain, slot) pairs and val-
ues similar to DSTQA; and (3) feed the utterance
string to the GPT-2 model to predict the dialogue
state, incorporating the GAT features learned in the
previous step (Lin et al., 2021). Adding this inter-
mediate step of passing through a GAT mitigates
the decrease in performance caused by GPT-2’s
causality. Also, it has been shown to capture inter-
slot dependencies, improve predictions at interme-
diate dialogue turns, and improve the predictions
of correlated slots.

3 Dataset

The Multi-Domain Wizard of Oz (MultiwWOZ)
dataset is a fully-labelled collection of human-
human written conversations spanning multiple
domains and topics. It is the first widely used
multi-domain dialogue dataset for the DST task
(Balaraman et al., 2021). It comprises dialogues in
seven domains: Attraction, Hospital, Police, Ho-
tel, Restaurant, Taxi, and Train (the latter four of
which are extended domains that include the sub-
task Booking), collected using the Wizard-of-Oz
approach (Budzianowski et al., 2018). The dia-
logues cover between one and five domains per
dialogue, greatly varying in length and complex-
ity. 10438 dialogues were released, of which 3406
are single-domain, and 7,032 are multi-domain.
At about 10 thousand dialogues, it is considerably
larger than all previous annotated task-oriented cor-
pora.

Since its first release, MultiwOZ has gone
through several iterations. In particular, since Mul-
tiWwOZ 2.0 that KAGE-GPT2 used, a new schema
has been added, slot values standardized, annota-
tion errors corrected, span annotations standard-
ized, active intents and requested slots for each
user turn annotated, and user and system actions
fixed and added in MultiwOZ 2.2 (Zang et al.,
2020). Performances of state-of-the-art models
like TRADE, SGD-baseline, and DS-DST are simi-
lar upon the updates and is a compelling reason for
using the cleaned MultiWOZ 2.2 dataset for fairer
comparison between our proposed GPT-3 model
and KAGE-GPT2.

4 Approaches
4.1 Adapting and Substituting the
transformer model

As mentioned in §2.2, Lin et al. utilized GPT-2
to obtain the value of the embedding for each slot
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Figure 1: Training workflow of the KAGE-GPT2 model proposed and built by the KAGE-GPT2 authors (Lin et al.,
2021). From the authors: (1) the pre-extraction layer is where the model extracts domain-slot embeddings (e.g.,
hotel-name) from dialogue history; (2) the GAN layer is where inter-slot relations are learned from the domain-slot
embeddings passed from (1); (3) generation layer is where the updated domain-slot features are fed into GPT2 to
generate the predicted dialogue state of slot values causally.

name in the first step of the model; in the third step
of the model, the GPT-2 transformer is used again
to obtain an embedding of the combined user’s
and system’s utterances. We hypothesized that sub-
stituting the transformer model with a similar but
more sophisticated one may let the model generate
a ‘richer’ and more ‘meaningful’ embedding both
for the Graph Attention Network in step 2 and the
final prediction step.

We considered and have attempted to adapt Lin
et al.’s model with the variants of GPT models with
various complexities as in table 1.

# of layer | # of parameters
GPT-3 96 175 Billion
GPTNeoX 44 20 Billion
GPT-2-XL 48 1557 Million
GPT-2 Large 36 774 Million
GPT-2 Medium | 24 1558 Million
GPT-2 12 117 Million

Table 1: GPT models with various complexities that we
attempted to train on the multi-domain problem.

4.2 Analysis of Dialogue State Tracking for
Specific Domains

We recognize that the KAGE-GPT?2 method per-
formed decently well for its time as it achieved
a joint accuracy of 54.86% and a slot accuracy
of 97.47% (Lin et al., 2021). These results were
produced when the model was trained and tested
across five domains: attraction, hotel, restaurant,
taxi, and train. We individually tested the author’s
pre-trained GPT-2 model against each of the five
aforementioned domains. The results received
from each domain were compared to results tested
against all domains. The goal of these experiments
was to find if the pre-trained GPT-2 model performs
better on certain specific domains than others and if
the model performs better when restricted to an in-
dividual domain than when run on a multi-domain
ontology.

We tested the author’s pre-trained GPT2 model
on two subsets of dialogues from the original test
dataset to do this domain-specific analysis for each
of the five experimental domains. The first subset
was dialogues classified as being in exactly and
only the target domain. In contrast, the second
was dialogues classified as being in the specified



domain and zero or more other non-target domains.
Support for two new command-line argu-
ments, -test_domain and -test_con-
sider_other_domains, was added to the
evaluation script. Specifying a target domain in
evaluation would modify the slots passed to the
training algorithm to be learned and evaluated and
trim the test dataset to only include the previously
mentioned subset of dialogues for evaluation.

4.3 Substituting MultiwOZ 2.0 with
MultiwOZ 2.1

MultiWwOZ 2.1 corrects four main dialogue state
error types in the original MultiWwOZ 2.0 dataset
that in practice, has been found to have substantial
noise (Eric et al., 2019)—delayed annotations of
slot values one or more turns after an initial appear-
ance in user utterances, multi-annotations of slot
values where only one is correct, mis-annotations
of slot values, typographically-inconsistent anno-
tations, and forgotten slot values that never occur
in the dialogue state despite being mentioned in
user utterance(s). Additionally, the newer dataset
includes annotations for user utterances instead of
the existing annotations for system dialogue acts.

The MultiwOZ 2.1 authors found consistent
drops in the test set joint state accuracies for var-
ious Joint State Tracker models (e.g., Flat Joint
State Tracker, Hierarchical Joint State Tracker, and
TRADE) due to the newer dataset causing models
to generate more incorrect slot value predictions
when the target label is none or dontcare. In this
paper we compared the results obtained from eval-
uating Lin et al.’s KAGE-GPT?2 pre-trained model
on individual domains, unions of domains (with
a specified target domain), and the original multi-
domain dataset, on the MultiwOZ 2.0 dataset, to
results obtained from the evaluation on the Mul-
tiWwOZ 2.1 dataset. We analyzed the differences
to see if they matched the MultiWOZ 2.1 authors’
findings.

The authors also found the largest slot accuracy
decrease from MultiwOZ 2.0 to MultiwOZ 2.1
occurred for the restaurant-name slot. In this
paper, we also evaluated the KAGE-GPT2 model
on the individual domain of restaurant, and thus
compared the results obtained from the original
MultiwOZ 2.0 dataset to that obtained from the
newer data-set to see if these same discrepancies
are apparent on this model.

5 Evaluation and Results

The two performance metrics used are joint goal
accuracy and slot accuracy. Joint goal accuracy, or
joint accuracy, is computed by assigning a value of
1 or O to each dialogue turn depending on whether
the predicted dialogue state (also called a belief
state) matches the ground-truth belief state—that
is, whether all slot-value predictions of a dialogue
turn match all slot-value pairs in the ground-truth
belief state—then computing the average of these
boolean indicator values across all dialogue turns
for a dialogue. Slot accuracy is computed at a finer-
grained level by computing the ratio of correct slot-
value predictions of each turn, then computing the
average of these ratios.

5.1 Evaluation and Results from the
Transformer Substitution Experiments

In essence, we drastically underestimated the effort
and resources needed to substitute these models to
adapt the original paper authors’ 8000-line code
base to work with these new models effectively.

Unfortunately, we did not yield many satisfac-
tory results in this arduous process. We initially
considered using GPT-3 as mentioned in our origi-
nal project proposal. However, the plan to substi-
tute GPT-2 to GPT-3 was unfortunately put on halt
as we realized that Huggingface does not provide
direct support to embed GPT-3 in our codebase
as it was unbeknownst to us that GPT-3 is not an
open-source model. This would require us to use
OpenAl’s custom API, which would require us to
rewrite almost the majority of the 8000-line code
base, which we ultimately decided was not eco-
nomical.

Hence, we focused on finding an alternative
model to GPT-3. We found out more about GPT-
NeoX, an alternative model with roughly 20 billion
trainable parameters. We thought this would be a
model with ‘decent’ complexity. Even though the
number of parameters GPTNeoX has is one degree
of magnitude less than GPT-3, GPTNeoX still has
about two degrees of magnitude more parameters
than our baseline GPT-2 model, which we thought
would ultimately lead to improved performance.

However, we encountered several issues attempt-
ing to conform the author’s codebase to utilize
GPTNeoX. The following is a non-exhaustive list
of problems encountered during our development
process:



5.1.1 Conflicting requirements.txt
Provided by the Authors

We naturally started with using the author’s Github
repository. The first issue we encountered was cor-
rectly setting up a functional python environment
using the author-provided requirements. txt.
First, the author did not specify which version of
Python, the training environment that was origi-
nally used, and whether the environment should be
set up in conda or pip. Thus, we created a per-
mutation of these setup environments by choosing
a specific Python version, one of Python 3.6.8, 3.7,
3.8, 3.9, and 3.10, a specific package manager, e.g.
conda or pip. This was worsened by the fact that
we had to circumnavigate different restrictions on
the various computation platform that we are lim-
ited to, namely local Mac environments, Google
Colabatory, CAEN, and Great Lakes Slurm HPC
Clusters, which we further elaborate on in the ‘Re-
source Limitations’ section. We had to create more
than 20 conda/pip environments to find a suit-
able environment for each computation platform.

However, in every environment that we tried in
the series of permutations, if we used the author’s
requirements file unmodified, we would inevitably
encounter the following issues:

* There is one specific requirement line named
pkg-resources==0.0.0. After exten-
sive research, we concluded that this specific
requirement is likely to be a bug resulting
from the authors’ specific Linux distribution
(Wright, 2016).

 For whatever reason, notwithstanding the pre-
vious issue, all of the authors’ requirements
are specified using ==, which is likely to be
the result of a pip freeze of the authors’
local environment. However, this seems to
have created unnecessarily strict requirements
such that the most recent versions of pip can
no longer resolve the dependencies conflicts,
as shown in the figure below.

(venv) [normangw@caen-vnc-mil8 Knowledge-Aware-Gr
aph-Enhanced-GPT-2-for-Dialogue-State-Tracking]$
pip install -r Src/reqguirements.txt

Figure 2: An example of various package conflicts we
had to manually resolve one by one in the beginning
stage of the setting up relevant environments

This is not just the only conflict but one
amongst the tens of dozens of conflicts we
encountered along the way. Thus, we had to
make assumptions about which packages are
necessary to be kept, such as torch, ten-
sorboard, transformers to use Hug-
gingface’s library functions. We had to keep
trying to fail to see which versions of which
packages were essential to the execution of
the program while not breaking CUDA and
transformers compatibility. As men-
tioned, the discrepancies between the differ-
ent versions will be one of our main struggles
throughout this project.

* These conflicts may surface differently on dif-
ferent computation platforms, further increas-
ing the confusion and difficulty associated
with the setup process. For instance, it is eas-
ier to set up CUDA on Great Lakes than on
Google Colab, as every module needs to be
loaded ‘from scratch". In contrast, an initial
uninstallation process needs to take place on
Google Colab before using wget to obtain an
archived version of Pytorch with older CUDA
compatibility.

5.1.2 Deprecation of Certain Huggingface
Functions

One of the other main issues that we experienced
was the need to deal with the discrepancy caused
by the difference in the version of the trans-
formers libraries used by the author, 3.5.1,
which is 25 version releases behind the latest
version 4.5.1, which enables us easier access to an
implementation of the GPTNeoX model. However,
as transformers library iterated, the code file
structures shifted around, and many functions were
renamed or removed as specific implementation
details in library functions changed. In the latest
4.5.1 version of transformers, two functions
were called in the paper authors’ code-base in their
KAGE-GPT2 model file, specifically _init_-
sequence_length_for_generation, and

_update_seq_length_for_generation

were removed from the GenerationMixin
class in transformers/src/transform-
ers/generation/utils.py which are
inherited from the general class for pre-trained
models. We had to trace through the source code
function call after function call to investigate the
best way to fix such compatibility issues, which



may result in further knock-on effects. We ap-
pended those two aforementioned functions to the
original implementation of the KAGE_GPT2.py
model (tra, 2020).

Unfortunately, even though our training script
seemed to be able to execute normally when gener-
ating the validation results, for unknown reasons,
the transformers based on the newer 4.25.1 version
cannot reliably generate a slot-value pair in the
eventual output layer. However, we were eventu-
ally able to fix such issues only in environments
installed with the older 3.5.1 version of the trans-
former. By using differential testing techniques, we
concluded that presumably unknown latent changes
to the Huggingface library caused the discrepancy
in the output dialogue generation.

We realized that since most of the changes in
the library code were not within our purview, it
would not be worth the risk and time to hack the
code-base further to work with transformers
version 4.25.1. However, this meant that we had
to revert to the authors’ transformers versions
which meant that we could no longer use the GPT-
NeoX model. Subsequently, we looked for more
available native models on version 3.5.1, which we
would not need to implement from scratch. Hence,
as mentioned in §4.1, we experimented with vari-
ants of GPT-2 models: GPT-2-Extra-Large, GPT2-
Large, and GPT2-Medium as the next set of targets
of the transformer substitution experiments.

5.1.3 Resource Limitations

We faced quite some severe limitations with re-
sources throughout the project. Unfortunately, due
to the aforementioned difficulties in getting a cus-
tom model to run, we did not have too much un-
congested time using the Great Lakes computing
cluster. We often had to wait more than 24 hours
for a simple less-than-1-hour testing script to start
running. Despite the difficulties, we fully debugged
the training script on Great Lakes for our experi-
ments for substituting GPT-2 for other GPT-2 vari-
ants. However, we encountered an unforeseen dif-
ficulty in fitting a Large Language Model through
Great Lakes. We attempted to finetune GPT-2-XL,
GPT-2 Large models on Great Lakes. However,
even with a training batch size of 1, a dialogue in
the MultiwOZ dataset may be too long , the inter-
mediate variables may not fully fit into the 48GB of
storage provided by one NVIDIA A40 GPU. Even
though it is technically possible to utilize multiple
GPUs while training, it would be nearly impossible

to have an accurate estimate of how much rewriting
needs to be completed to have a fully functional
code-base again especially given that older versions
of transformers may not be suited to perform
multi-GPU tasks. Due to time limitations as well,
we were only able to finetune the GPT-2-Medium
model, which would fit successfully the memory
constraint using a single GPU.

graphAttentionLSIGFBatch_modified

y = torch.matmul(z, h) #B x P x N x F
51 RuntimeError: CUDA out of memory. Tried to allocate 314.00
MiB (GPU 0; 44.37 GiB total capacity; 41.68 GiB already

allocated; 146.50 MiB free; 42.87 GiB reserved in total by
PyTorch)

Figure 3: Training GPT-2-XL/GPT-2 Large model
would cause a single-GPU instance on Great Lakes to
run out of memory

Meanwhile, we experienced significant lags
while attempting to finetune/test our models on
Great Lakes. We had to rely on other computing
platforms such as Google Colabatory and CAEN.
We spent $74.99 on Google Colab to purchase
enough computing credits to sanity-test the author’s
GPT-2 training and testing script, finetuning the
various GPT-2 variant models aforementioned, and
running our domain-specific analysis scripts.

The difficulty in using a GPU is not the only
issue we encountered throughout the experiments
and analysis runs. As we also needed to store our
trained model, permanent storage devices became
a significant issue. The authors’ pre-trained GPT-2
model alone took up around 40GB of space, but
we were only given around 80GB of storage in
our /home directory. Unfortunately, once a user’s
/home directory becomes full, it would be impos-
sible to perform basically operations. It would
even be possible to run rm —rf as presumably
removing files would require writing to the file
meta-data. It took significant effort to restore the
file system to its normal state. As we also wanted
to share our work on Great Lakes, we attempted
touse the /scratch/eecs595f22 class_-—
root/eecsb595f22 class/shared_-
data/ directory, we did not know that there is
an implicit storage limit for the shared_data
directory, our saved training models along with the
authors’ models somehow also exceeded the limit
allowed. Hence, we had to migrate our code base
again to our individually allocated folder in the
/scratch directory. As we also took advantage
of Google Colab, we had to utilize the Google



Drive File System. However, Google Drive File
System is not the best at addressing filename
conflicts and multiple users writing to the same file
simultaneously. It was often the case that on the
GUI, the files and directories may appear to have
the same name, but in the actual underlying file
system, they have different names. We learnt this
the hard way by accidentally deleting the wrong
version of our modified files.

5.2 Evaluation with GPT-2-Medium

Table 2 lists the joint goal and slot accuracies ob-
tained by evaluating the author’s pre-trained model
and our adaptation of the GPT2-Medium model on

the MultiwOZ 2.0 dataset.

- Accuracy (%)
Utilized Models Joint | Slot
GPT-2 42 95.70
GPT-2-Medium | 34 95.13

Table 2: Results of evaluating pre-trained KAGE-GPT2
model and the KAGE-GPT2-Medium model on the Mul-
tiWOZ 2.0 dataset.

Unfortunately, we only had enough time and
computational resources to finetune the GPT-2-
Medium model for one epoch rather than eight
epochs for GPT-2. However, it seems that the vari-
ant model has already achieved a similar level of
accuracy as the regular model. This corroborates
with the initial goals of these experiments that a
larger transformer model may yield higher accu-
racy.

5.3 Evaluation on Specific Target Domains

Table 3 lists the joint goal and slot accuracies ob-
tained by evaluating the author’s epoch eight pre-
trained model on the MultiWOZ 2.0 data-set for
dialogues in specific individual target domains. In
both tables, 3 and 4, the “full dataset, all domains"
row correspond to running the model on the au-
thor’s original unmodified code and dataset. In
table 3, every other row corresponds to evaluating
the model on dialogue data whose domains field
contains only and exactly the target domain. In
contrast, in table 4, every other row corresponds to
evaluating the model on dialogue data whose do—
mains field contains at least the target domain, but
additionally zero or more other non-target domains
from the list of domains in the static ontology.

. Accuracy (%)
Domain(s) Joint | Slot
Full dataset, all domains | 42 95.70
Attraction domain 90.70 | 99.69
Hotel domain 51 96.93
Restaurant domain 64 98.50
Taxi domain 83 99.33
Train domain 70 98.67

Table 3: Results of evaluating pre-trained KAGE-GPT2
model on specific individual target domains on the Mul-
tiWOZ 2.0 dataset.

. Accuracy (%)
Domain(s) Joint | Slot
Full dataset, all domains 42 95.70
Attraction + other domain(s) | 71 98.83
Hotel + other domain(s) 42 95.70
Restaurant + other domain(s) | 42 95.70
Taxi + other domain(s) 34 95.13
Train + other domain(s) 78 98.67

Table 4: Results of evaluating pre-trained KAGE-GPT2
model on specific individual target domains and zero or
more other non-target domains on the MultiwOZ 2.0
dataset.

5.4 Evaluation on Updated Dataset

Table 5 lists the joint goal accuracies obtained by
evaluating the same epoch 8 pre-trained model
on both the MultiwOZ 2.0 and MultiwOZ 2.1
datasets, for dialogues in specific individual tar-
get domains. Table 5 is analogous to table 3 in that
each row corresponds to evaluating the model on
dialogue data whose domains field contains only
and exactly the target domain; while table 6 is anal-
ogous to table 4 in that each row corresponds to
evaluating the model on dialogue data whose do—
mains field contains the target domain and zero
or more other non-target domains.



. Joint accuracy (%) . Slot accuracy (%)
Domain(s) WOZ 2.0 W(y)z 2.1 Domain(s) WOZ 2.0 WyOZ 2.1
Full data, all domains | 42 34 Full data, all domains | 95.70 93.90
Attraction 90.70 86.05 Attraction + other(s) | 98.83 97.10
Hotel 51 36 Hotel + other(s) 95.70 93.90
Restaurant 64 53 Restaurant + other(s) | 95.70 93.90
Taxi 83 64 Taxi + other(s) 95.13 93.67
Train 70 65 Train + other(s) 98.67 97.67

Table 5: Joint accuracy results of evaluating pre-trained
KAGE-GPT2 model on specific individual target do-
mains, on MultiwOZ 2.0 versus MultiwOZ 2.1.

. Joint accuracy (%)
Domain(s) WOZ 2.0 | WOZ 2.1
Full data, all domains | 42 34
Attraction + other(s) | 71 41
Hotel + other(s) 42 34
Restaurant + other(s) | 42 34
Taxi + other(s) 34 25
Train + other(s) 78 42

Table 6: Joint accuracy results of evaluating pre-trained
KAGE-GPT?2 model on specific individual target do-
mains and zero or more other non-target domains, on
MultiWOZ 2.0 versus MultiwWOZ 2.1.

Tables 8 and 7 are analogous to tables 6 and
5 in what their rows correspond to, respectively;
but, instead of joint goal accuracy, they list the slot
accuracies obtained by evaluating the same epoch
eight pre-trained model on both the MultiWOZ 2.0
and MultiWwOZ 2.1 datasets.

. Slot accuracy (%)
Domain(s) WOZ 2.0 | WOZ 2.1
Full data, all domains | 95.70 93.90
Attraction 99.69 99.53
Hotel 96.93 96.17
Restaurant 98.50 98.03
Taxi 99.33 98.5
Train 98.67 98.50

Table 7: Slot accuracy results of evaluating pre-trained
KAGE-GPT2 model on specific individual target do-
mains, on MultiwOZ 2.0 versus MultiwWOZ 2.1.

Table 8: Slot accuracy results of evaluating pre-trained
KAGE-GPT2 model on specific individual target do-
mains and zero or more other non-target domains, on
MultiwWOZ 2.0 versus MultiwOZ 2.1.

6 Discussion

In this section, we analyze and discuss the trends
and patterns in the obtained data.

6.1 Analyzing Evaluation Results with the
GPT-2-Medium model

In table 2, we observe that the joint and slot ac-
curacies obtained with the GPT-2 Medium model
are worse than the accuracy given with the GPT-2
model. There is a joint accuracy loss of 8% and
slot accuracy loss of 0.6% with the GPT-2-Medium
model. This is due to the amount of time training
on the GPT-2-Medium model. The author’s pre-
trained model ran for eight epochs, while the GPT-
2-Medium model ran for only one epoch. They
both share the same hyperparameters. Since the
GPT-2-Medium model does well for only having
one epoch of training time and almost having the
same slot accuracy, we predict that it’ll surpass the
author’s implementation given enough time. We
couldn’t run the model long enough due to lack of
time, as one epoch takes five hours to train.

6.2 Analyzing Evaluation Results on Specific
Target Domains

6.2.1 Joint Accuracy Less Than Slot Accuracy

In both tables 3 and 4, joint goal accuracies are
consistently less than slot accuracies for all ex-
periments. This trend also aligns with the results
observed by the KAGE-GPT?2 authors. This is ex-
pected since joint goal accuracy has much stricter
requirements than slot accuracy, and slot accuracy
is, in some sense, simply a finer-grained and more
relaxed metric—anywhere a dialogue turn has a
slot accuracy ratio less than 100%, it would have a
joint accuracy indicator of 0.



6.2.2 Better Performance on Single Target
Domain

In the single target domain case, evaluation of the
epoch eight pre-trained models produced higher
joint goal and slot accuracies compared to the orig-
inal multi-domain problem. Joint goal accuracies
obtained from the evaluation of the five individual
target domains range of 51-90.70%. They are all
higher than the 42% joint accuracy on the multi-
domain dataset, while slot accuracies obtained are
in the range of 96.93-99.69% and are all higher
than the 95.70% slot accuracy on the multi-domain
dataset.

This is expected because of two reasons: (1)
the model is effectively being evaluated on a small
subset test dataset of dialogues, particularly in the
single target domain case where the size of the
subsets are much smaller, hence statistically, the
accuracies are naturally higher since there is much
less room for the model to make incorrect slot pre-
dictions; and (2) the restricted single target domain
problems likely contain much fewer examples of
none or dontcare, and the model is much more
likely to make slot-value prediction errors due to
the possibility of being confused by other domains
present in multi-domain dialogue examples.

6.2.3 Better Performance When Excluding All
Non-Target Domains

This second reason should also explain why perfor-
mance in the single target domain case (table 3) is
better than that in the joint target + other non-target
domain(s) case (table 4), as seen from the results
where slot accuracy in the former are in the range
96.93-99.69% while that in the latter is in the range
95.13-98.83%; and joint goal accuracy in the for-
mer are in the range 51-90.70% while that in the
latter is in the range 34-78%.

6.2.4 Best and Worst Target Domains

Evaluation of the model on the attraction domain
produced the best joint goal and slot accuracies
across the board, as seen in tables 3 and 4, while
evaluation of the model on the hotel domain in the
single target domain case produced the worst joint
and slot accuracies.

6.3 Analyzing Evaluation Results on Updated
Dataset

6.3.1 Lower Performance on Multiw0OZ 2.1
Across All Domains

Tables 5, 6 and 7 illustrate that joint goal and slot ac-
curacies obtained from the evaluation of the KAGE-
GPT2 model on MultiWwOZ 2.1 are lower than on
MultiWOZ 2.0 across the board. In the single tar-
get domain case, joint accuracies on MultiwOZ
2.1 are lower than on MultiwOZ 2.0 across all in-
dividual domains, including joint domain sets (i.e.,
domain sets including the target domain and zero
or more non-target domains). On average, however,
the disparities between the joint goal accuracies are
larger on the joint domain sets (table 6) than on
single target domains (table 5).

Slot accuracy on MultiwOZ 2.1 was also lower
than on MultiWOZ 2.0 across all individual target
domains and all joint domain sets, as seen in tables
7 and 8 respectively, except in the evaluation results
on single target domain of restaurant, as seen in ta-
ble 7, with slot accuracy of 98.03% on MultiwWOZ
2.1 falling short of the slot accuracy of 98.50% on
MultiWOZ 2.0. These general results are expected
and align with the MultiWOZ 2.1 authors’ find-
ings of joint accuracy drops from 2.0 to 2.1 when
evaluated on baseline joint state tracker models like
Flat Joint State Tracker and Hierarchical Joint State
Tracker (Eric et al., 2019).

7 Lessons Learned

7.1 Taking a Shortcut May actually Result in
a Detour

The goal of this project was frankly not too am-
bitious in my original opinion. We thought we
could naively think that we may simply substitute
the given GPT-2 Python class in the authors’ code-
base by using the GPTNeoX model. In the initial
phase of the project, we had this illusion after read-
ing through the documentation of both models and
found out that their APIs are largely the same. This
false sense of ‘security’ was further strengthed by
our relative lack of experience dealing with large
modern libraries such as transformers. We
falsely thought that as long as the APIs resemble
each other, the scope of the work shall be relatively
limited.

In hindsight, perhaps it would have been faster
to start a brand new code-base and use more mod-
ern libraries to implement what the authors’ model



was, and perform the transformer substitution ex-
periments. Perhaps with the help of using newer
libraries, we would have an easier time also at-
tempting to convert the code base to work with
multiple GPUs, which is called for to finetune any
meaningful Large Language models in hindsight.
While this conclusion is only a hypothesis, it was
true that we should not have limited the scope of
the project so earlier on, and fixated on getting the
substitution experiments to work.

7.2 Asking for help earlier on

As we spent a long time simply failing and trying
to set up the various code bases and environments,
it did not occur to us that we were rather ‘behind’
in terms of overall progress. If we reached out
for suggestions from Professor Chai or other GSIs
sooner, we would have realized earlier on that we
should have a set of diversified approaches, such
as modifying the Graph Attention Network, experi-
menting with alternative models such as using an
RNN belief state tracker or just basing our project
on a different paper.

7.3 Time and Resource Management

We severely underestimated the time required to
create an environment, adapt models, fine-tune,
test, and analyze the various models. Even though
we did not start the project that late, we should
have perhaps started the project one or two weeks
earlier. In the meantime, we should have used
our computational resources more efficiently in
hindsight. If we have realized that Great Lakes has
a huge backlog, we should have made the case to
use Google Colab earlier on.

8 Conclusion

We faced significant challenges attempting to im-
prove the existing novel hybrid KAGE-GPT2 dia-
logue state tracking model to use GPT-3, largely
due to versioning conflicts and deprecation of criti-
cal functions in the main transformers library used
by the original KAGE-GPT?2 authors. In light of
this, we focused our analysis on evaluating the
KAGE-GPT2 model, trained on a multi-domain
problem, on specific individual target domains as
well as these individual domains with zero or more
other non-target domains (i.e., what we call “joint
domains"). Our experiments found that the multi-
domain KAGE-GPT2 model is extremely effective
on single-domain problems. The model is much
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less likely to make erroneous slot-value predictions
when not confused by other non-target domains.
This is further substantiated by our results on joint
domains having a slightly higher joint goal and slot
accuracies compared to the results on single target
domains.

We also evaluated the pre-trained KAGE-GPT2
model on the newer and updated MultiwOZ 2.1 ad-
dresses errors and removing noise from the original
MultiwOZ 2.0 dataset. Our results in this exper-
iment align with findings by the MultiwOZ 2.1
authors, with a joint goal and slot accuracies being
lower on the newer dataset.
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