Procedural Activity Recognition and Mistake Detection

Filippos Bellos
fbellos@umich.edu

Tom Brady
tdbrady@umich.edu

Lydia Rogers
lydiajr@umich.edu

Abstract

We consider two highly codependent prob-
lems. First, fine-grained, multi-step activity
recognition from instructional videos contain-
ing different recipes spanning up to several min-
utes. Second, we examine step mistake recogni-
tion while executing recipe instructional videos.
The first problem we address differs from tradi-
tional activity classification due to the length of
the videos. Typical models are trained on short
videos spanning only a few seconds. These
videos are manually trimmed to contain sim-
ple atomic actions. Our approach leverages ro-
bust activity recognizers using Contrastive Cap-
tioners (CoCa) and distant supervision learning
methods, optimizes the models on downstream
tasks, and creates a new "mistake" dataset. We
compare these two approaches and present a
model capable of recognizing mistakes with
high accuracy.

1 Introduction

We address a multi-faceted problem. First, finding
the best manner in which to extract meaningful em-
beddings from instructional videos that last several
minutes. We explore multi-modal image-text repre-
sentations pretrained on a large dataset, expecting
this to yield the best results.

The second problem is leveraging these learned
rich embeddings of each step’s sematics to clas-
sify temporal segments of steps provided in recipe
instructions (multi-step activity recognition). Ad-
ditionally, we investigate how we can temporally
localize when an out of order mistake has been
executed (mistake detection).

2 Related Work

This section details previous work that relates to
our recipe mistake detection task.
2.1 Written Recipe Recognition

Computer recognition and understanding of recipe
instructions has been heavily researched within

NLP over the last decade. Donatelli et al. (Do-
natelli et al., 2021) translated recipes into a graph
structure in hopes of recognizing different recipes
for the same dish as equivalent steps in preparing
that dish. By aligning recipes at the action level, the
complex structure of these recipes could be mod-
eled. For example, Figure 1 shows two different
recipes for making waffles, with "preheat" in (b)
clearly aligned with "preheated" in (c), giving use-
ful insight into recipe step recognition. The graph-
ing method proved effective at aligning recipes, and
the novel corpus that was created to model align-
ment across different recipe steps provides a useful
basis for training models in recipe step recognition.

(b) Preheat your waffle iron. In a large bowl, mix together
the flour, salt, baking powder, and sugar. In another bowl,
beat the eggs. Add the milk, butter, and vanilla to the eggs.
Pour the liquid into the flour mixture and beat until
blended. Ladle the batter into the waffle iron and cook
until crisp and golden.

(c) Sift together in a large mixing bowl flour, baking
powder, salt, and sugar. In a jug, measure out milk.
Separate eggs, placing egg whites in the bowl of standing
mixer. Add yolks and vanilla essence to milk and whisk
together. Pour over the flour mixture and very gently stir
until combined. Stir in the melted butter and continue
mixing very gently until combined. Beat egg whites until
stiff and slowly fold into batter. Spoon the batter into
preheated waffle iron in batches and cook according to its
directions. Remove immediately and serve with maple
syrup and fruits.

Figure 1: Two different recipes for making waffles (Do-
natelli et al., 2021). The "preheat" in (b) aligns with
"preheated" in (c), giving meaningful relations between
the two in recognizing them as equivalent steps in mak-
ing waffles.

2.2 Recipe Image Recognition

While written recipe recognition is a key step in
recipe understanding, computer vision plays a sig-
nificant role as well. Research into computer vision
methods has allowed recipe preparation and instruc-

tion videos to be connected to written recipes. This
has enabled recipe video annotating, i.e. adding
annotations for recipe videos with their accompa-
nying steps. To that end, multimodal pre-training
techniques have been developed. Min et al. (Min
et al., 2017) introduced multimodal content model-
ing, which is utilized to accomplish tasks like iden-
tifying ingredients and attributes of recipes from
images. They proposed the MultiModal MultiTask
Deep Belief Network (M3TDBN). As shown in
Figure 2, the first pathway learns the join repre-
sentation of image features and visible ingredients.
The second pathway learns the representation of
ingredients, which includes non-visible ingredients.
At the top layers, this information is connected,
enabling fine-tuning of the whole architecture as
shown in Figure 2, which can classify the cuisine
and course in a downstream task.

cuisine course

viP)

Y
image ingredient

Figure 2: A multimodal model with joint pathways for
identifying visible ingredients and non-visible ingredi-
ents (Min et al., 2017). This model enables fine-tuning
such as classifying course and cuisine from images and
ingredients.

These techniques and others have greatly ad-
vanced processing recipe text and videos using
natural language processing and computer vision
techniques. However, there is not much research
in the area of error detection in recipe recogni-
tion. Our approach is among the novel approaches
in this area, which combines prior techniques in
image-text pre-training and the resulting models to
accomplish the task.

2.3 Image-Text Pretraining

Recent work has proposed image-text foundation
models that can subsume both vision and vision-
language pretraining. CLIP (Radford et al., 2021)
and ALIGN (Jia et al., 2021) proved that when dual-
encoder models are pretrained on noisy image-text

pairs using contrastive learning can learn strong
image and text representations for cross-modal
alignment tasks. CLIP pre-trains an image en-
coder and a text encoder to predict which images
were paired with which text in the dataset (Ope-
nAl, 2021). CLIP can then be used as a zero-shot
classifier, predicting captions for images it has not
yet seen. It is highly efficient, flexible, and gen-
eral, pairing image and text as we desire. ALIGN
implements a dual-encoder as well, pushing em-
beddings of matched image-text pairs together
and non-matched pairs apart (Jia et al., 2021).
These two methods prove useful when performing
cross-modal alignment tasks, like our recipe step
recognition. A different angle proposes encoder-
decoder models trained with generative loss and
achieves strong performance on vision-language
tasks (Wang et al., 2021), (Wang et al., 2022). Sim-
ple Visual Language Model Pre-training with Weak
Supervision (SimVLM) trains on weakly aligned
image-text pairs, i.e. text paired with an image
where the text is not necessarily a precise descrip-
tion for the image. This encoder-decoder model
achieves strong performance as well, performing
well in zero-shot image classification.

2.4 Distant Supervision and Contrastive
Captioners

Distant supervision has been studied in natural lan-
guage processing and usually the supervision for
the training is obtained by automatically mining ex-
amples from a large noisy corpus utilizing a clean
and informative knowledge base (Alayrac et al.,
2020). It has been shown to be very successful
on the problem of relation extraction. However,
the concept of distant supervision had not been ex-
ploited in video understanding prior to (Lin et al.,
2022).

Contrastive Captioners (CoCa) has been success-
ful in creating aligned unimodal image and text
embeddings. We leverage these two models in
achieving recipe step mistake detection.

3 Datasets

This section details the datasets that we use in pre-
training the models and in downstream tasks.

3.1 COCO - Common Objects in Context

COCO (Lin et al., 2014) is a dataset of 330,000
images, with over 200,000 containing associated
labeled captions. There are 91 classes of images,

with 80 in use. Each labeled image has five as-
sociated captions. This dataset has been utilized
widely since its creation in 2015 to train image
captioning and recognition models. We utilize this
dataset to pre-train our CoCa model. This dataset
is ideal for training with CoCa due to its focus on
object identification. Since CoCa heavily relies on
learned tensors in order to properly identify objects,
COCO'’s focus on object segmentation makes it an
ideal dataset for pretraining this model.

3.2 HowTol00M

HowTol00M (Miech et al., 2019) is a dataset of em-
beddings of over 1M long instructional videos split
into about 120M video clips in total. Importantly,
HowTo100M has auto-generated captions, creating
noisy image-text pairs. This dataset is used for
the distant supervision method that essentially de-
noises the ASR textual descriptions. However, due
to the size and formatting of this particular dataset,
we utilize the previously mentioned COCO dataset
rather than HowTo100M for CoCa pretraining.

3.3 COmprehensive INstructional Video
Analysis (COIN)

The dataset utilized for downstream tasks is COIN,
a large-scale dataset for comprehensive instruc-
tional video analysis (Yansong Tang, 2019). This
dataset offers a wide variety of encoded long-form
videos, where each instruction step shown in the
video is encoded along with the video timestamp
boundaries for each step. Specifically, for our
downstream tasks, we utilize the "boil noodles"
subset of COIN, which contains 97 instructional
videos of how to boil noodles with up to four steps
each. This subset contains several instructional
videos for the task of boiling noodles, with their
associated steps. We have chosen this particular
dataset for both its simplicity and size. Boiling
noodles is a common instructional procedure, and
across different instructional videos, the primary
objects for our pretraining methods to recognize,
such as water, a pot, and the noodles themselves,
appear in each video. When segmenting each of
the 97 videos into frames for modeling, we have
very sufficient training data for our desired results.

In order to create our "mistake" dataset, we gen-
erate a process to create lapse (out of order) mis-
takes in the instructions associated with the boiling
noodles subset. The recipes are executed in a shuf-
fled order as shown in Figure 3. Our goal is for our
approaches to be able to utilize predictions of the

next frame of the video, as well as learned features
of the video, to be able to identify with confidence
when the actions in the video do not align with the
recipe instructions.

4 Distant Supervision

The goal of this method is to learn a segment-level
representation to express a long procedural video
as a sequence of step embeddings. Then a sequence
model can be applied on this video representation
to perform temporal reasoning over the individ-
ual steps. While step annotations could enable
the training of models to recognize the individual
steps of procedural activities, existing large-scale
datasets in this area do not include such segment
labels due to the prohibitive cost of manually an-
notating temporal boundaries in long videos. That
is why we want to learn the step-level representa-
tion without manual annotations, so as to enable
training on these large-scale unlabeled data.

4.1 Leveraging Knowledge Base to denoise
ASR labels

WikiHow acts as a knowledge base B contain-

ing textual step descriptions for T tasks: B =

1 1 T T
{yg), ...,ygl), e ,y§), ...,ygT)}, where ygt) rep-

resents the language-based description of step
s for task ¢, and .S; is the number of steps in-
volved for the execution of task . An instruc-
tional video x is expressed as a sequence of L
segments {x1, ..., z, .., x1 }, with each segment x;
consisting of /' RGB frames. Each video is ac-
companied by a paired sequence of text sentences
{ai,...,ay,..,ar} obtained by applying ASR to the
audio narration. This narration a; is noisy due to
ASR errors.

So, by using this distant supervision method we
can leverage the knowledge base B to denoise the
narration a; and to convert it into a supervisory
signal that is more directly related to the steps rep-
resented in segments of the video. In order to be
able do that without any form of annotation we
approximate the unknown conditional distribution:

exp (S(ay, yt))
N

2128 exp (S(ar,ys)
over the steps executed in the video after first cal-
culating the textual similarity measure S between

ygt) and a; :

S(an,yM) = e(a)" - e(y?))

Py |z) ~

Original Dataset

L,,,1,",,,-,,,,"’;‘,,,1,,,,‘,,,,JL,,,,,,,:,,,? ,,,,,,,,,,,,, o e =4

/ 1

é é

Step 2: Pour
the noodles into
the water and
stir

Step 1: Add
seasoning to the
boiling water

Step 1: Add
seasoning to the
boiling water

Mistakes Dataset

Step 3: Pour
the cooked
noodles

Step 3: Pour
the cooked
noodles

Step 1: Add
seasoning to the
boiling water

Step 1: Add
seasoning to the
boiling water

Step 2: Pour
the noodles into
the water and
stir

Figure 3: Video example from mistake dataset

where e(a;), e(ygt)) € R? and d is the dimen-
sion of the language embedding space.

So, we use that approximated distribution
P(ygt)|xl) as the supervision to learn the video
segments representation, since it is more salient
compared to the noisy and unstructured narration
a;. The training objectives to learn that video rep-
resentation are explained below.

4.2 Learning meaningful representations
from videos

In this work, three different training objectives are
used to train a Timesformer to recognize individual
steps of procedural activities in video.: (1) step
classification, (2) distribution matching, and (3)
step regression. For (1): the target indices t*, s* of
the steps in the Knowledge Base that best describes
a given video segment is basically the argmax of
the target conditional distribution

t*,s* = arg max P(y®|ay). 3)
,8

So with these indices as targets we train a classifi-
cation model to learn embeddings using a standard
cross-entropy loss:

mgin—log ([fc(xl;e)](t*js*)) “4)
where F¢ denotes the activity recognition model

on step level and 6 denotes the learning parameters
of that model.

For (2): we train the step classification model
to minimize the KL-Divergence between the pre-
dicted distribution and the target distribution,
which is the conditional probability we have been
talking about:

PP |a)

—_— 5
Fow ey O

; (t)
min 3" Py) log

t,s

For (3): we train the video model to predict the lan-
guage embedding e(yg)) associated to the pseudo
ground-truth step, which is the same indices from
(1), t*,s* . So, again from argmax of the condi-
tional distribution.

For the training, the NCE loss is used as the

objective:

exp (e(yt) Frlai;0))
min — log

t
o Z(t,s)?s(t*,s*) exp <€(y§))T}—R(xl; 9))
(6)
where Fr denotes the regression model that does
the mapping to the language embedding space.

4.3 Downstream Tasks
4.3.1 Activity Recognition

We make use of F¢(z;) explained in 4.2 as a
feature extractor to capture step-level information
from new video segments. Specifically, we use
the second-to-last layer of F¢(x;) (before the soft-
max function) as the step embedding representation

f () for classification of procedural activities in
long videos. We then train a linear classifier on top
of those step embedding representations, using our
new dataset.

4.3.2 Activity Forecasting

We consider the task of “next-step anticipation”. To
do that, the proposed classification model is modi-
fied to address forecasting tasks over a sequence of
steps to predict future activity.

So, given as input a video spanning M segments,
{z1,...,zpr}, the goal is to predict the step exe-
cuted in the unobserved (M + 1) segment. In order
to do that a transformer is trained. So, for each in-
put segment z;, we include f(x]) which is the em-
bedding of the best matching step §(x;) = yzll but
also e(y?) +1)» Which is the embedding of the step
immediately after the step matched in the knowl-
edge base. This effectively provides the trans-
former with information about the likely future
steps according to the knowledge base.

4.3.3 Mistake Recognition

We are using the activity recognition model de-
scribed in 4.3.1 as our initial state estimation pre-
dictor. So, the output of that model is converted to
normalized probabilities (0 to 1) corresponding to
each possible state. The maximum of those predic-
tions is selected, applying a threshold on it, as well
as the state it corresponds to. The threshold makes
sure that the activity recognition model is confident
enough for its prediction. This confident output
is added to a fixed length window. Whenever the
window is full we calculate the most frequent esti-
mated state that populates the window(most occur-
rences), and then we empty the window. This, most
frequent, estimated state is then given as input to
the orchestration model which will decide if a mis-
take has occurred. A mistake occurs if one of the
model’s constraints is violated. These constraints
aim to preserve the sequential characteristics of
the recipe being executed and are explained below.
Given the steps in order from the original dataset
labels:

¢ The initial state has to be state O or the first
state in the labels if state O is omitted, and
the ending state has to be state 3 or the last
state in the labels . For example, if the first
model’s input is a state corresponding to a
state other than O or first state then a mistake
has occurred.

* The only actions allowed are the one that
stays at the same state, and the one that tran-
sitions to the next state. So for example, if
the model receives as input, state 3 or state 1
while the previous received state was state 2,
then none of the two aforementioned actions
is performed and a mistake is detected.

5 Contrastive Captioners (CoCa)

This section details our second approach, which
leverages Contrastive Captioners (CoCa) for pre-
training.

5.1 CoCa Model

The CoCa model (Yu et al., 2022) is a novel
encoder-decoder strategy that generates aligned
unimodal image and text embeddings and joint mul-
timodal representations, making it versatile enough
to be used for a variety of downstream applica-
tions. CoCa, in particular, produces cutting-edge
performance on vision and vision-language tasks,
including vision identification, cross-modal align-
ment, and multimodal understanding. It also learns
extremely generic representations, allowing it to
compete with or outperform thoroughly fine-tuned
models using zero-shot learning or frozen encoders.

CoCa is a unified training system that effec-
tively combines single-encoder, dual-encoder, and
encoder-decoder paradigms by integrating con-
trastive loss and captioning loss on a single training
data stream consisting of image level annotations
and noisy image-text pairs.

A new encoder-decoder architecture is intro-
duced in CoCa. The encoder is a vision transformer
(ViT) (Dosovitskiy et al., 2020), and the text de-
coder transformer is split into two parts: a uni-
modal and a multimodal text decoder. Multimodal
decoder layers are cascaded with cross-attention to
image encoder outputs to learn multimodal image-
text terms for captioning loss. This approach max-
imizes the model’s versatility and universality in
accommodating a wide range of jobs while also
being trained effectively with only one forward and
backward propagation for both training objectives,
resulting in little computational overhead with an
ideal implementation. The architecture of CoCa
is shown in Figure 5, which takes image-caption
pairs, running images through the ViT image en-
coder and text decoder, which with an attentional
pooler can be fed to a multimodal text decoder to
generate captioning loss.

Mistakes
Dataset

e
~

Pretrained
Timesformer

+
Learned linear
classifier

Step
prediction

Orchestration
Layer

Figure 4: Overview of mistake recognition module

two dogs running in a field [fs]

I O
Multimodal
Text Decoder

—
cls-token

HentOD b

attentional pooling
Image
Encoder

Unimodal
Text Decoder

rrrtrrrt

000000000000 [s] two dogs runningin a field [CLS]

{ ﬂ “two dogs running in a field” } pairs
- ,

image text

Figure 5: CoCa architecture (Yu et al., 2022). The
CoCa model takes image-text pairs in the pre-training
task, generating captioning loss in training the model.

As a result, the model can be trained from
the ground up with costs comparable to a naive
encoder-decoder model. We use a simple approach
to enable a learned CoCa model for video activity
recognition tasks. We first take multiple frames of
a video and feed each frame into the shared image
encoder individually. For frozen feature evalua-
tion or finetuning, we learn an additional pooler
on top of the spatial and temporal feature tokens
with a softmax cross-entropy loss. Note the pooler
has a single query token thus the computation of
pooling over all spatial and temporal tokens is not
expensive.

5.2 CoCa Pre-Training

The code base for Google AI’s implementation for
CoCa is not publicly available. In order to proceed
with our analysis, we utilize an open-source imple-
mentation of CoCa on Github (Wang, 2022). This
code utilizes PyTorch and ViT, allowing us to im-
plement CoCa in our own work using open-source
packages.

To accompany the open-source implementation,
we build a process to load images from COCO
(Lin et al., 2014) for the purpose of pretraining the
model. Using the captioned subset of COCO, we
load images from their URLs stored in a COCO
JSON file, tokenizing the caption and converting
the image into a 256 x 256 tensor. These image text-
token pairs are then passed to CoCa, which trains
on thirty-two example-batches over several epochs,
computing the captioning loss to learn the image-
text relations. This training involves computing
the contrastive and captioning losses, the first of
which is produced through the attentional pooling
process and the latter computed following the use
of a multimodal text decoder for captioning.

5.3 Downstream Tasks

5.3.1 Activity Classification

Once pretraining with CoCa is completed, we will
then use the feature representation that we learned
and the COIN dataset to train a simple linear classi-
fier. The linear classifier works by utilizing key fea-
tures of each input video frame provided by CoCa

and estimating linear boundaries based on these
features to minimize classification error. Through
this procedure, we are able to identify which sec-
tions of our recipe videos from COIN align with
which instructions in the recipe instructions given.
The goal of this classifier is to correctly identify
these video segment-recipe step pairings, i.e. state
estimation on the frame level, which will prove use-
ful in state-prediction for later mistake detection
tasks.

5.3.2 Video Recipe Activity Recognition

We additionally fine-tune our CoCa model to per-
form video recipe step recognition. The procedure
for video interpretation using CoCa is shown in Fig-
ure 6 below. After extracting the frames of a subset
of each stepwise boundary of a boiling noodles
video, we pass each into the CoCa image encoder,
utilizing an attentional pooler to generate output
embeddings. This attentional pooler identifies key
components in the collection of video frames, as
well as the locations and state changes associated
with each object. We can then perform softmax
cross-entropy loss to perform activity forecasting.
In this, we predict the (n + 1)th frame with the first
n frames given as input to the task. To perform mis-
take detection, we need this method to understand
the correct temporal relations of different frames.

softmax cross-entropy

attentional pooling
s =~ it
e . e, OUEY
Image Image Image Image
Encoder Encoder Encoder Encoder

1 1

video frame ... video frame 6

| |

video frame 1

video frame 2

Figure 6: CoCa for video representation (Yu et al., 2022)
using individual image encoders, attentional pooling,
and softmax cross-entropy loss.

5.3.3 Mistake Recognition

Similar to distant supervision, we use our state-
prediction model as our initial state estimation pre-
dictor. The output is then converted to normalized
probabilities, corresponding to each possible state.
We select the maximum of those predictions and
apply a threshold on it, ensuring that the model is
confident enough for its prediction. We then detect
mistakes by seeing if one of the model’s constraints
is violated, which are outlined in 4.3.3.

5.4 Limitations of CoCa

While the CoCa architecture can be incredibly pow-
erful and accurate when provided the proper re-
sources, the time and data required to achieve desir-
able results from CoCa is immense. For example,
using our batch size of 32 images per pretraining
iteration, a single batch of images requires over
a minute to compute the loss on the Linux server
utilized. This is likely due to the intense process of
computing contrastive loss in order to locate com-
mon tensor patterns between images. While the
captioning loss is quite straightforward to compute,
the time complexity of contrastive loss increases
immensely with each additional image. This in-
duces a tradeoff between achieving higher accuracy
on downstream tasks and the time and resources
available for pretraining. For this reason, we use
only a subset of images from COCO to pretrain
the model. This tradeoff, as well as the fact that
a pretrained CoCa model and the pretraining data
from the original report are not publicly available,
limits the success we can achieve with this model.

6 Method Evaluation

Our main goal was to compare the two approaches
and attempt recipe mistake detection, given the em-
beddings extracted by them. The process of learn-
ing these embedding with these methods differs
significantly. The distant supervision method au-
tomatically identifies steps in instructional videos
by leveraging the distant supervision of a textual
knowledge base (wikiHow) that includes detailed
descriptions of the steps needed for the execution of
a wide variety of complex activities. So, it basically
tackles the problem of existing large-scale datasets
in this area not including such segment labels due to
the prohibitive cost of manually annotating tempo-
ral boundaries in long videos. Then, these denoised
textual descriptions are used to learn video segment
representations by training a Timesformer model.
As for the second method, CoCa is a minimalist de-
sign that pretrains an image-text encoder-decoder
foundation model jointly with contrastive loss and
captioning loss, thereby combining model capabil-
ities from contrastive approaches like CLIP and
generative methods like SimVLM. So, it follows
the trend of using large-scale pretrained foundation
vision-language models.

We wanted to compare these modern approachs
to conclude which one yields the richer representa-
tions, in order to later use them for our downstream

Task Segment Model Pretraining Dataset Eval. Dataset Acc(%)
Activity Recognition =~ Timesformer HT100M COIN Subset 70.6
Activity Forecasting Timesformer HT100M COIN Subset 51.2

Mistake Detection Timesformer HT100M Mistake COIN Subset 63.5

Table 1: Results with the distant supervision model on activity recognition, activity forecasting, and mistake

detection.

tasks and eventually the novel task of mistake de-
tection.

7 Results

The results we obtained from distant supervision
were quite encouraging. As shown in Table 1.

We can see the effectiveness of the step embed-
ding extracted from the denoising process, as with
just a trainable classifier and a transformer in the
case of Activity Recognition and Activity Forecast-
ing, we achieve a decent performance that trans-
lates into a decent mistake recognition as well. The
distant supervision model lends itself to express-
ing long videos as a sequence of step embeddings,
proving to be effective when fine-tuned for down-
stream tasks.

CoCa proved to be a far more difficult approach
than distant supervision. While the model was pre-
trained with limited data as explained above, the
generated embeddings were both insufficient and
highly-complex due to the intricacies of CoCa. Al-
though we did manage to successfully implement
the downstream tasks, due to not having the re-
sources to pre-train CoCa on an adequate amount
of data, the results obtained were not sufficient to
report.

8 Experiments

Due to the computational cost, for all the down-
stream tasks, we chose to use the already ex-
tracted text embeddings of all the ASR sentences
in HowTo100M provided by the authors as well as
the pretrained weights for the video model, Times-
former. The dataset used for the pretraining is
HowTol00M (HT100M) as explained in section
3. To evaluate our downstream tasks, we use the
step annotations from COIN. We chose to use only
one of the procedural activities in order to be more
flexible and be able to evaluate on all our down-
stream tasks. This recipe is number 10 in the COIN
dataset and called BoilNoodles. It consists of 97
videos, where each one is comprised of up to 4
steps as explained in Section 3. The steps are man-

ually annotated within each video with temporal
boundaries and step class labels.

The Timesformer used starts from a configura-
tion of ViT initialized with ImageNet-21K ViT
pretraining. Each segment consists of 8 frames
uniformly sampled from a time-span of 8 seconds.
For pretraining, the segments are sampled accord-
ing to the ASR temporal boundaries available in
HowTol00M while a batch of 256 segments is
used.

For activity recognition, we train a simple linear
classifier on embeddings extracted from individual
segments of the COIN dataset. We used sampling
of 8 frames uniformly, as well as experimented
with less frames. That didn’t have much difference
on the performance.

For activity forecasting on the COIN subset we
use a single basic transformer layer trained on top
of our fixed embeddings. The transformer layer
that performed best has 768 embedding dimensions
and 12 heads, while we also tried one with 512
embedding size and 8 heads. The difference in
performance was about 4%.

For the task of mistake recognition we experi-
mented with different thresholds of prediction con-
fidence, ending up using a threshold of 80%. We
also tried different window sizes. As explained in
section 4.3.3, the window is used to compute the
most frequent predicted activity in it. And since
we used sampling of 8 frames for each video seg-
ment the window sizes we tried varied from 4 to 8.
We ended up using 8 but the difference in perfor-
mance was minimal, around 1% between the worst
window size and the best.

9 Conclusion

For this project, we investigate the use of two pre-
training methods for image recognition and cap-
tioning, and use the results in performing a novel
downstream task of mistake recognition. Although
we do not succeed in performing this downstream
task using the CoCa model we trained due to time
and resource restraints, the use of distant super-

vision offers promising results, particularly with
activity recognition and mistake detection. This is
an encouraging result for future work, and hints
at how these methods could be utilized in actively
recognizing the task that a user is trying to accom-
plish and guides him step-by-step in the successful
execution of the recipe, detecting when a mistake
has occurred. Mistake detection for instructional
procedures is shown to be an achievable and wor-
thy milestone in the application of computer vision
and natural language processing.

References

Jean-Baptiste Alayrac, Adria Recasens, Rosalia Schnei-
der, Relja Arandjelovié, Jason Ramapuram, Jeffrey
De Fauw, Lucas Smaira, Sander Dieleman, and An-
drew Zisserman. 2020. Self-supervised multimodal
versatile networks.

Lucia Donatelli, Theresa Schmidt, Debanjali Biswas,
Arne Kohn, Fangzhou Zhai, and Alexander Koller.
2021. Aligning actions across recipe graphs. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6930-
6942.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2020. An image
is worth 16x16 words: Transformers for image
recognition at scale.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung,
Zhen Li, and Tom Duerig. 2021. Scaling up vi-
sual and vision-language representation learning with
noisy text supervision.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona,
Deva Ramanan, C. Lawrence Zitnick, and Piotr Dol-
lar. 2014. Microsoft coco: Common objects in con-
text.

Xudong Lin, Fabio Petroni, Gedas Bertasius, Marcus
Rohrbach, Shih-Fu Chang, and Lorenzo Torresani.
2022. Learning to recognize procedural activities
with distant supervision.

Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,
Makarand Tapaswi, Ivan Laptev, and Josef Sivic.
2019. Howtol100m: Learning a text-video embed-
ding by watching hundred million narrated video
clips.

Weiqging Min, Shuqiang Jiang, Jitao Sang, Huayang
Wang, Xinda Liu, and Luis Herranz. 2017. Being
a supercook: Joint food attributes and multimodal
content modeling for recipe retrieval and exploration.
IEEE Transactions on Multimedia, 19(5):1100-1113.

OpenAl. 2021. Clip: Connecting text and images.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision.

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai
Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren
Zhou, and Hongxia Yang. 2022. Ofa: Unifying ar-
chitectures, tasks, and modalities through a simple
sequence-to-sequence learning framework.

Phil Wang. 2022. Coca - pytorch.

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yu-
lia Tsvetkov, and Yuan Cao. 2021. Simvlm: Simple
visual language model pretraining with weak super-
vision.

Yongming Rao Yu Zheng Danyang Zhang Lili Zhao
Jiwen Lu Jie Zhou Yansong Tang, Dajun Ding. 2019.
Coin: A large-scale dataset for comprehensive in-
structional video analysis. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Ye-
ung, Mojtaba Seyedhosseini, and Yonghui Wu. 2022.
Coca: Contrastive captioners are image-text founda-
tion models.

https://doi.org/10.48550/ARXIV.2006.16228
https://doi.org/10.48550/ARXIV.2006.16228
https://doi.org/10.48550/ARXIV.2010.11929
https://doi.org/10.48550/ARXIV.2010.11929
https://doi.org/10.48550/ARXIV.2010.11929
https://doi.org/10.48550/ARXIV.2102.05918
https://doi.org/10.48550/ARXIV.2102.05918
https://doi.org/10.48550/ARXIV.2102.05918
https://doi.org/10.48550/ARXIV.1405.0312
https://doi.org/10.48550/ARXIV.1405.0312
https://doi.org/10.48550/ARXIV.2201.10990
https://doi.org/10.48550/ARXIV.2201.10990
https://doi.org/10.48550/ARXIV.1906.03327
https://doi.org/10.48550/ARXIV.1906.03327
https://doi.org/10.48550/ARXIV.1906.03327
https://doi.org/10.1109/TMM.2016.2639382
https://doi.org/10.1109/TMM.2016.2639382
https://doi.org/10.1109/TMM.2016.2639382
https://openai.com/blog/clip/
https://doi.org/10.48550/ARXIV.2103.00020
https://doi.org/10.48550/ARXIV.2103.00020
https://doi.org/10.48550/ARXIV.2103.00020
https://doi.org/10.48550/ARXIV.2202.03052
https://doi.org/10.48550/ARXIV.2202.03052
https://doi.org/10.48550/ARXIV.2202.03052
https://github.com/lucidrains/CoCa-pytorch
https://doi.org/10.48550/ARXIV.2108.10904
https://doi.org/10.48550/ARXIV.2108.10904
https://doi.org/10.48550/ARXIV.2108.10904
https://doi.org/10.48550/ARXIV.2205.01917
https://doi.org/10.48550/ARXIV.2205.01917

	Introduction
	Related Work
	Written Recipe Recognition
	Recipe Image Recognition
	Image-Text Pretraining
	Distant Supervision and Contrastive Captioners

	Datasets
	COCO - Common Objects in Context
	HowTo100M
	COmprehensive INstructional Video Analysis (COIN)

	Distant Supervision
	Leveraging Knowledge Base to denoise ASR labels
	Learning meaningful representations from videos
	Downstream Tasks
	Activity Recognition
	Activity Forecasting
	Mistake Recognition

	Contrastive Captioners (CoCa)
	CoCa Model
	CoCa Pre-Training
	Downstream Tasks
	Activity Classification
	Video Recipe Activity Recognition
	Mistake Recognition

	Limitations of CoCa

	Method Evaluation
	Results
	Experiments
	Conclusion

