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1 Introduction

Despite recent advances in knowledge representa-
tion, automated reasoning, and machine learning,
artificial agents still lack the ability to understand
basic action-effect relations regarding the physical
world. For example, slicing an apple will most
likely lead to a state of the world where an apple
has been separated into smaller pieces. This type
of understanding is imperative to these artificial
agents helping us in joint tasks, so they can rea-
son about the changing state of the world and plan
out its actions. With this setup in mind, it is im-
portant for these agents to understand the state of
the world through images and reason about them
through actions expressed in language. There is a
current CNN approach to this problem, but there
haven’t been many experiments surrounding the
architecture this model. Additionally, data is espe-
cially important because there are so many possible
actions to assess in the world, so experiments that
can work around this scarcity would be vastly more
beneficial.

This report presents an image captioning based
approach using the One-For-All (OFA) model [1]
shown in Figure 3, and attempts to translate a cap-
tioning model’s understanding of the world into
reasoning about action-effect causality. We look at
the baseline understanding of pretraining caption-
ing models, attempt to improve this with further
training, and also explore sources of error present
in our dataset.

2 Related Work

Below we have linked the research papers that we
will be building upon:

1. OFA paper [1]

2. Action-Effect paper [2]
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2.1 Physical Causality Reasoning

Previous work poses physical causality reasoning
as a classification problem. A study from the SLED
Lab at Umich [2] uses a CNN on effect images to
predict the most likely action-effect label in the
dataset. As mentioned in [2], there has been previ-
ous work on establishing cause and effect relation-
ships from text [3], but these are mostly high level
reasoning from information, rather than understand
the physical reality of a cause and effect. They also
introduce a dataset of 140 verb-noun pairs and as-
sociated images that display the result of the action
performed on the world e.g. "chop wood" or "boil
egg." Examples images are shown in Figure 1.

Figure 1: Diagram of our matching process. We obtain
a caption, process it, then match to the closest noun-verb
pair we find in the GloVe embedding space

2.2 Image Captioning

Image captioning is a multi-modal natural language
task used to describe what is happening in an image.
This task generally requires understanding of both
images and text, as well as the relationship between


https://arxiv.org/pdf/2202.03052.pdf
https://aclanthology.org/P18-1086/

Unified Vocab.

VG: Which region does the text “Man in
white shirt” describe?

=

[ec: What does the region describe? region:

do <img1> <loc1>
on <img2> <loc2>
person <img3> <loc3>

Bl cimgs192> [ <ioctooo>
Textvocab.  Image vocab.  Location vocab,

] Visualize B i

Man in white shirt

de 4ol ]
===E+$mmmmww
-m--|

Image Captioning: What does the image
describe?

Masking VQA: How many people are there in the
9 picture?

Detection: What are the objects in the
image?

Image Infilling: What is the image in the
middle part?

Text Infilling: What is the complete text of
“A <mask> woman” ?

Visual Grounding 1

| Grounded Captioning 1

| Image-Text Matching
Image Captioning

\
\
| <img123><img1ss><imgs11>,..<imgsz1>]->;uecoaerj £
Object Detect \ et
ject Detection | \ i

| Visual Question Answering | \
H

Image Infilling
Text Infilling

)
- )
)

[Two boys playing frisbee on the grass

= )
car- Visualize
=

~—

\
\{ A beautiful woman }

] | |

Vision & Language Tasks

Vision Tasks

Language Tasks

Figure 2: Diagram of the OFA architecture. The image captioning sections relevant to us are circled in red. They
encode image captioning as a visual question answering task for the query "What does the image describe?".

the two. For many years, these understandings
have been achieved through convolutional neural
network feature extractors combined with language
encoders and decoders [4] [5]. The state of the art
has since shifted towards RNNs, then LSTMs [6],
and now Transformers [1] [7] [8]. Transformers
alleviate shortcomings in training efficiency and
expressibility compared to previous methods. We
plan to harness transformer based image captioning
models’ understanding of scenes to extract action-
effect relations in images.

2.3 Unified Frameworks

OFA is not the first attempt at a unified, one-for-all
framework. Perceiver io [9] initially found success
with combination of architecture from different do-
mains (convolutions, attention, gated layers, etc.).
They suggested a move away from domain and task
assumptions and proposed a general multi-modality
architecture. OFA is inspired by these previous
works and builds on them with a multi-modality,
task-agnostic, Transformer-based approach. With a
uniform byte-sequence representation, OFA makes
it easier than ever to unify tasks of different modal-
ities. It’s success comes from designing various
task-specific layers, but this universality has its
drawbacks. The result of the layer blending is per-
formance degradation in downstream tasks.

3 Methodology: Our Approaches

We have approached this problem from the per-
spective of image captioning, with the idea that
models capable of captioning a scene accurately
would already have an inherent understanding of

the world and actions performed on it. Below we
detail our methods of image captioning with OFA,
using these captions to extract verb-noun pairs, and
our attempts to eliminate error in our dataset.

3.1 Image captioning with OFA

Though image captioning does not inherently un-
derstand action-effect relationships, a model with
a comprehensive understanding should be able to
understand the state of an image well enough to
infer action. This assumption is the basis of lever-
age for our research. To test this assumption, we
found the number one image captioning model for
the MSCOCO dataset, OFA. With the diversity of
MSCOCO’s 328,000 images of everyday objects
and people, OFA is able to grasp a better under-
standing of various states of the world. With this
understanding, we hope to help OFA understand
the relationships between actions and their results
on the state-of-the-world. To test this theory, we
utilized the relationships built into the action-effect
dataset. First, we fed the effect images into a pre-
trained OFA-Base model with 180 million parame-
ters. The resulting captions were then used to try to
predict a corresponding action-effect label. Second,
we fine-tuned the OFA model on the dataset to see
if there was any improvement in its understanding
in action-effect relationships. If OFA is able to gen-
erate a caption detailed enough to incorporate this
relationship, the novel field of physical causality
research would be able to leverage the work done
on a task with much more work devoted to it.
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Figure 3: Diagram of our matching process. We obtain a caption, process it, then match to the closest noun-verb

pair we find in the GloVe embedding space

3.2 Verb-Noun extraction from image
captioning

Similar to [2], we frame our action-effect predic-
tion as a 140-way classification problem, with one
class for each verb-noun pair in the dataset. Rather
than directly predict the verb-noun class, once we
obtain an image’s caption from OFA, we employ
a series of steps to process and match the caption
to it’s correct class. First, we obtain the caption
from OFA, then we perform lemmatization and
stop word removal to improve processing accuracy
and avoid noise in our matching step. These steps
turn "a peeled orange sitting on top of some chips"
into "peel orange sit top chips". We then obtain
GloVe [10] embeddings for all remaining words
in the caption and all of the verb-noun pairs in the
dataset. For each verb-noun pair in the dataset,
we find the word in the caption with the smallest
euclidean distance d,, to the verb in the GloVe em-
bedding space, then do the same for the noun and
obtain d,,. The score s(P, ¢) for a noun-verb pair
P given a caption c is:

dy+d,

s(P,c) 5

, and the prediction for the caption we generate is
the noun-verb pair with the lowest score. A visual
demonstration of this process is shown in Figure 2.
We perform this process on captions obtained
from an OFA model pretrained on MSCOCO, as
well as one finetuned on the action-effect dataset.
We split the action effect dataset into 80% train,
20% validation and finetune for 5 epochs with a
learning rate of 1e-5 and dropout probability 0.1.

3.3 Dataset Cleaning

The action-effect dataset is certainly a small one
on the scale of deep learning. First, 40 nouns were
selected that represent everyday life objects, most
from the COCO dataset (e.g. apple, door, window,
etc.). These objects represent a wide range of ev-
eryday objects from food, kitchenware, furniture,
indoor objects and outdoor objects. Then, analy-
sis was done on the top 3000 most frequently used
verbs from Google Syntactic N-gram dataset. From
there, the top frequent verb noun pairs containing
one of the 3000 verbs and one of the 40 nouns
holding a direct object dependency relation were
selected. This resulted in thousands of candidate
examples, but verb-noun pairs were manually se-
lected from this batch. The selection was based on
changes to the objects that were clear results from
the verb, as well as changes the reflect a particular
dimension that can’t be generalized. For example,
"cook a meal" can be decomposed to more basic
actions like "cut onion." The end result was 140
verb-noun pairs.

While the intention of the dataset construction
was to decompose to the most basic actions, we
found that these enforcements were not held for
the entirety of images selected. After confusing
initial results, we investigated the dataset and real-
ized much of the data was difficult even for us to
label correctly, not to mention our model. A few
such examples are shown in Figure 4, and these
difficulties fell into three categories.

The first is what we named the "potato prece-
dent." This problem got its name because we no-
ticed that there were up to 9 verbs associated with
one noun, and one such noun was "potato." More
specifically, 5 of these verbs had to do with varia-



tions of preparation: [bake, cook, boil, fry, mash]
potato. While boil, fry, mash, and bake are differ-
ent actions that we want to differentiate between,
“cook” envelopes all of these under its definition,
and the images within “cook” often display mul-
tiple variations of cooking that overlap with the
other forms of preparation. We expect this can in-
troduce error into our predictions because captions
for “cook potato” are likely to match to a more spe-
cific variation of cooking depending on the image.
We can apply this same reasoning to our pruning
of the “meat” and “egg” categories.

Second, we found verbs that were synonymous,
or extremely close to each other. For example,
"burn wood" and "ignite wood" were separate la-
bels in the dataset. While there are subtle differ-
ences to these verbs, these differences weren’t cap-
tured in the images under each label. In fact, we
found several duplicate images between labels of
similar categories. In total, there were 31 images
duplicated across different labels. These, of course,
were removed because it’s impossible to expect a
model to predict different labels for the same im-
age. To further alleviate synonymous verbs, we
also removed verb-noun pairs that we thought were
equivalent e.g. "close door" and "shut door", or
"burn paper" and "ignite paper".

Third, we noticed that while there may have been
labels with different nouns and verbs, there still was
a possibility that the content of the images made it
futile to distinguish between labels. One example
of this problem was between "break window" and
"crack glass." At first look, these actions seem very
distinguishable, but upon a scan of the images we
saw many images in the "break window" category
with the structure of the window still intact thus
seeming like cracked glass. Furthermore, some of
the images in "break window" did not include the
window frame at all and simply looked like broken
and cracked glass, so our assessment would have
been cracked glass without knowing what label
the image belonged to. Another example of this
would be between "chop wood" and "pile wood".
These verb-noun pairs mean understandably differ-
ent things, but both contain many images of piles
of chopped wood. In our opinion, both labels are
valid for these images, so we remove one of the
categories to avoid this error. This issue of the noun
not being accurately represented in the images was
prevalent throughout our dataset, so extensive hand-
picking was done throughout many of the labels

to ensure there would be no confusion about the
effect depicted in the image.

As aresult of the various issues we encountered
with the dataset, we removed 32 labels and 491 im-
ages from the original 2100 in the *positive’ direc-
tories of all the original labels. Of course, limiting
the training data in a deep learning problem seems
like a bad option. We came to the understanding
that the model would be able to distinguish between
these labels much easier.

Figure 4: Above are examples from the dataset that we
found indistinguishable by their assigned labels. We see
"burn wood" (left) vs. "ignite wood" (right), "break win-
dow" (left) vs. "crack glass" (right), and "bake potato”
(left) vs. "cook potato” (right)

4 Evaluation

On top of the several different approaches in our
methodology, we took multiple approaches for our
evaluation. We compute accuracy, top 5 accuracy,
mAP, average distance to match, average score dif-
ference for incorrect predictions, and a GloVe syn-
onym accuracy for baseline and finetuned mod-
els on three different datasets, each with differ-
ent levels of data pre-processing. The first dataset
(Dataset 1) consists of all “positive” images for
each verb-noun pair. The second dataset (Dataset



1.5) is identical to Dataset 1 except duplicate im-
ages across verb-noun pairs have been removed
(31 images). For the third dataset (Dataset 2), we
removed verb-noun pairs we found too similar (491
removed, detailed in section 3.3).

Dataset 1 consisted of 2048 images split into
1649 training and 399 validation. Datasets 1.5 and
2 were created from smaller, pruned sets of images
as mentioned above, but we split these datasets
(which are themselves subsets of Dataset 1) such
that their training and validation sets were sub-
sets of Dataset 1. In other words, we did not split
Datasets 1.5 and 2 randomly, but instead any im-
age that appeared in the training set of Dataset 1
was training for 1.5 and 2, with the same process
used for validation. This allows better performance
comparison across the datasets and lets us clearly
see if our dataset error analyses were correct. Since
images in Dataset 1 were uniformly divided into
training and validation, the distribution of Datasets
1.5 and 2 are still very close to 80% training, 20%
validation. Dataset 1.5 contains 1622 training and
395 validation. Dataset 2 contains 1239 training
and 297 validation.

4.1 Metrics

Accuracy and Top 5 Accuracy: Once we have
matched each caption to a noun-verb class from
the dataset, we compute a simple accuracy metric
num_correct / total samples. We additionally com-
pute a top 5 accuracy metric, which is computed
exactly the same as accuracy, but a prediction is
counted as correct if the correct noun-verb pair
from the dataset is one of the top 5 choices from
the matching step (even if it is not the first choice).

mAP: mean Average Precision (mAP) is com-
puted as normal. For each noun-verb pair, we com-
pute the precision as

TP
TP+ FP

and take the average across all noun-verb pairs to
obtain mAP.

GloVe Synonym Accuracy: Because of our pre-
vious difficulties with images that could fit multiple
labels, we decided to create our own metric that
would take label similarity into account. Since we
used GloVe embeddings to be able to relate the
generated caption to each of the 140 labels, we are
able to measure how different the predicted label
and ground truth label are in meaning by taking a

distance measurement between their GloVe embed-
dings. Therefore, we could determine that if the
GloVe distance between the prediction and ground
truth stayed below a designated distance threshold,
the predicted and ground truth labels were close
enough in meaning to capture an understanding
of the action-effect relationship. After combing
through GloVe distances between all labels in our
dataset, we discovered that a Pythagorean distance
of less than 5.3 for verbs and 4.5 for nouns could
determine enough similarity in meaning. If the
pythagorean distance fell below these values, we
determined that the model understood the action
that caused the state of the world in the image. This
meant that the model could predict "fry potato" and
our new metric would mark this prediction correct,
even if the label was "cook potato.” This metric
is especially important for Datasets 1 and 1.5 be-
cause synonymous labels were not removed, and
we found that this could be a more efficient way to
avoid the need to hand-prune these datasets.

Average Score Difference for Incorrect Predic-
tions: When we predict incorrectly, it means that a
verb-noun pair, that was not the ground truth label,
was calculated to be closer to our generated caption
than the label. This would generally suggest that
our caption did not contain information relevant
enough to our target verb-noun pair, so it matched
with some other verb-noun pair. We report a metric
that measures how much further, on average, the
ground truth verb-noun pair is from our caption,
compared to the one we predicted. So, in the con-
text of being incorrect, when this metric is low we
were close to being right, and it suggests that our
caption had relevant information, but maybe not
quite enough. When it is high we were very far
from being right, and it suggests the caption had
very little relevant information, so some other label
in the dataset, likely not close to our ground truth,
matched much better.

To give a more concrete example, if our ground
truth verb-noun pair was "bake potato”, our caption
was "mashed potatoes in a brown bowl", and our
prediction was "mash potatoes", this metric would
likely be very low because we would have been
close to predicting "bake potato." In contrast, if
our ground truth verb-noun pair was "bake potato",
our caption was "fried steak on a plate”, and our
prediction was "fry meat", this metric would be
very high because we would not have been close to
predicting "bake potato."



4.2 Results

For each of the three datasets, we applied the
baseline pretrained OFA-Base model to the test
data, which was about 390 images for the first two
datasets and 290 for Dataset 2. These pretrained
weights are what performed number one on the
MSCOCO dataset for image captioning, so we felt
confident in obtaining relatively accurate captions
because the action-effect dataset consists of com-
mon objects. However, we continued to look for
improvements, so we also finetuned the OFA-Base
model on the training data from each dataset. This
was 1649 images for Dataset 1, 1622 images for
Dataset 1.5, and 1239 images for Dataset 2. The
action label, e.g. "chop onion", was used as the
label this time, instead of an image caption. Our
hope was that tweaking the model’s expectations
for image labels would broaden its efficacy on phys-
ical effect reasoning. These results are captured in
Figures 5, 6, and 7 with all of the aforementioned
metrics. Overall, we found better results after fine-
tuning the model on our datasets with the largest
improvements occurring on the Top One Accuracy
metric.

5 Discussion

5.1 Dataset 1 Findings

The model in the original paper found its best re-
sults from a combination of bootstrapping, seed im-
ages, and Dataset 1. We can see the [2]’s relevant
results in Figure 8. Though we didn’t experiment
with the first two methods, we gathered comparable
results with our model in all the reported metrics,
except mAP [2]. Though our reported mAP was
0.27 lower, we obtained a top 1 accuracy 0.05
lower and a top 5 accuracy 0.07 higher. These
results show that there are certainly improvements
to be made with our method, but our hypothesis of
leveraging image captioning tools has promise.

5.2 Dataset 1.5 Findings

Because we expected the model to generate the
same caption for the same image, we expected to
see improvements after removing duplicate images
from the dataset. This is because the both images
would be classified under one of the labels, so we
were guaranteed to get one classification wrong.
After running our experiments, our expectations
appear to be misplaced. One explanation for the
unexpected results is the way that duplicates were
removed from the dataset. The removal process

considered the first label alphabetically to be the
rightful owner of that image, and all other dupli-
cates occurring later in the dataset were removed. It
could be the case that the first label with a duplicate
was not the label the model was always predicting
for that image.

5.3 Dataset 2 Findings

After the intensive hand-pruning of Dataset 2, the
expectation was that these results would outper-
form the other two and the data from previous work
[2]. While this was the case in a generally, we saw
a few surprises. First, the baseline metrics did not
improve and mAP was lower than the other results.
A possible explanation for this could be the lack
of images in the validation set, or the removal of
higher quality images from labels deemed to be
distracting. Second, the Top 5 Accuracy was nearly
identical to the others. This can be taken as a good
sign that our model is close to predicting the correct
label despite the distractions in the dataset. Still,
these results were our collective best. Compared to
the previous work’s data, We saw 0.02 increase in
Top 1 Accuracy and 0.07 increase in Top 5 Accu-
racy with only 0.2 decrease in mAP. Results like
these are not significant enough to determine that
our methods are preferable, but they are compara-
ble enough to warrant more research in overlapping
image captioning with physical causality reason-
ing.

5.4 Findings Across Datasets

We can see the direct improvement that our changes
brought to each dataset iteration, but we notice that
finetuning OFA image captioning on our action-
effect dataset reveals performance improvement
across datasets. We believe finetuning was very
beneficial it allowed OFA to better understand
what our dataset was looking for, which was verb-
noun pairs. Image captioning is a relatively uncon-
strained task, where the model will come up with
whatever description it feels best fits the image.
This may include incorrect information, as well
as information that is unnecessary to our action-
effect prediction task e.g. the location of objects in
the image, or information about the surroundings.
Examples of some poor captions obtained by the
baseline are shown in Figure 9. We saw only 1 or 2
word predictions after fine-tuning, and these words
were limited to verbs and nouns appearing in our
dataset, which helped simplifiy the matching step
tremendously. These improved predictions (as well



Avg. Incorrect

GloVe Score

Model \ Metric  Top 1 Accuracy Top 5 Accuracy mAP Accuracy Difference
Baseline 0.233 0.830 0.223 0.361 8.97
Finetuned on D1 0.474 0.917 0.394 0.617 347

Figure 5: Above are the results of the several metrics measured on Dataset 1. The first row holds metrics from
the OFA public pretrained weights, and the second row hold metrics resulting from training the OFA model on the

dataset.
Avg. Incorrect
GloVe Score
Model \ Metric Top 1 Accuracy Top 5 Accuracy mAP Accuracy Difference
Baseline 0.233 0.823 0.222 0.360 8.948
Finetuned on D1 0.473 0.917 0.393 0.615 3.510

Figure 6: Above are the results of the several metrics measured on Dataset 1.5. The first row holds metrics from
the OFA public pretrained weights, and the second row hold metrics resulting from training the OFA model on the

dataset.

Avg. Incorrect

GloVe Score

Model \ Metric  Top 1 Accuracy Top 5 Accuracy mAP Accuracy Difference
Baseline 0.266 0.832 0.212 0.370 7.970
Finetuned on D2 0.539 0.916 0.450 0.596 4.105

Figure 7: Above are the results of the several metrics measured on Dataset 2. The first row holds metrics from
the OFA public pretrained weights, and the second row hold metrics resulting from training the OFA model on the

dataset.
MAP Topl Top5 Top20
BS+Seed+Act+Eff  0.660 0523 0.843  0.954
BS+Seed+Act 0.642 0508 0.802 0924
Seed+Act+Eff 0.289 0.176  0.398  0.625
Seed+Act 0481 0301 0.724 0926
Seed 0.634 0520 0.765 0.892

Figure 8: Result table from [2] showing results for
prediction verb-noun labels given images. We compare
to their best results because no row’s data is directly
comparable to our procedures.

as their 1 or 2 word format) are likely why we see a
reduction in our average score difference metric for
incorrect predictions. The average incorrect score
difference lowered from 8.97 to 3.47, 8.948 to 3.51,
and 7.97 to 4.105 for datasets 1, 1.5, and 2, respec-
tively. These metrics suggest that when our model
was incorrect after finetuning, it was much closer
to being right than our baseline would have been,
likely because the model’s caption predictions were

constrained to small captions about objects known
to be contained in the dataset.

We would like to note however, that it is unlikely
that our model or the model from [2] would be
able to correctly generalize to new actions. Both
of these are setup as classification problems where
the models are trained to predict/learn labels in
the action-effect dataset, so expecting it to predict
outside of these labels in unrealistic. We would
expect, however, that it is able to generalize to
new images within the classes the dataset already
contains. For example, new images of chopped
onions or mashed potatoes could be added to the
dataset and we would expect the model to correctly
match these. A future direction of research could
involve exploring more generalizable approaches
to this problem, where the model’s understanding
of the world is general enough to predict verb-noun
pairs for unseen actions, rather than just unseen
images.



5.5 GloVe Synonym Accuracy Threshold

Similar to the issues in support vector machines,
finding the boundary that separates classes was dif-
ficult to universally define. In our case, the bound-
ary between synonyms and non-synonyms could
not be clearly defined. In the end, we decided
that placing separate boundaries for the verb and
the noun was the most accurate way to define syn-
onyms. Our final verb threshold was 5.3, and our
final noun threshold was 4.5. These numbers are
arbitrary with analysis of the embeddings in the
dataset. Therefore, these numbers were created by
analyzing hand selected synonyms like "ignite" and
"burn." While we found a boundary that we were
confident in, we understand that this boundary is
not absolute. For example, the GloVe distance be-
tween "throw" and "break" was below the 5.3 mark
even though these are clearly not synonyms. For
that reason, we understand this metric has its flaws,
and that is the reason we see increases in accuracy
in Figure 7 though the point of Dataset 2 was to
not require this metric. In sum, GloVe distance
analysis highlighted a lot of key issues with the
dataset and allows the model to be correct without
being exact, but could use some further tuning.
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Caption: “stock image of close up of sliced
ham on a white plate”

Figure 9: Example of poor results obtained by OFA

pretrained captioning. The top example showcases in-

correct information and the bottom example showcases
unecessary, noisy details.

6 Conclusion

As the field of Al continues its incredible pace of
achievements, we will continue to see robots oper-
ate in the physical world. Of course, they will need
to perceive their environment which has been a
prominent field of research. We see reliable under-
standing through image captioning tasks in large-
scale multi-modal models like OFA. However, an
arguably more important task for robots is to un-
derstand the consequences of their actions in their
environment. Agents with understanding in both
of these tasks will be able to understand the state
of their environment and map out the effects of
the available actions so that they can achieve their
goals. While the first part of this task has been
researched much more thoroughly, we contend that
this research is not mutually exclusive from the
second part of this task.

A model like OFA is the perfect candidate for
utilizing state-of-the-art research in image-to-text
tasks. With its top-of-the-line performance in un-
derstanding the setting of an image and its em-
phasis on multi-modality, this model was the best
contender to demonstrate a possibility for an agent
to have complete physical causality understanding
through one architecture.

This paper presents an initial exploration of how
this can be possible. There were many challenges
and possible explanations for some of the shortcom-
ings of our research. Still, the results and insights
gained from this paper warrant more research in
this area and in the idea of leveraging extensive
research in related tasks. Further focus in these
areas help work toward a world with agents who
can perceive their environment and accurately map
their actions to the best state of the physical world.
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