
Improvement on Baseline System for Tiered Reasoning for Intuitive Physics

Wenxin He
University of Michigan

wenxinhe@umich.edu

Ruge Xu
University of Michigan
rugexu@umich.edu

Yixin Shi
University of Michigan
esing@umich.edu

Abstract

The Storks paper introduces TRIP, a rich-
annotated commonsense reasoning dataset
that enables a multi-tiered evaluation of ma-
chines’ reasoning processes. It also proposed
a machine-learning reasoning model that is
trained on this dataset. The low performance
on the system’s verifiability calls for better
language-understanding models. We tried to
improve the baseline system performance in
three ways: automatic data augmentation, loss
function change, and adding a new module. We
evaluate the improved system using three met-
rics: accuracy, consistency, and verifiability.
Results show that the methods have success-
fully improved the performance in some way.

1 Introduction

Commonsense reasoning is one of the heated topics
in natural language understanding. Recent research
activities have achieved impressive performance in
challenging language understanding tasks. More
and more large amounts of large-scale benchmark
datasets and language models have been devel-
oped. Some of them even achieve extraordinaty
performance that surpassed human performance in
challenging language understanding tasks. How-
ever, evaluations only based on end-task perfor-
mance don’t necessarily mean that machines have
the true ability in language understanding and rea-
soning. To deal with this problem, the dataset
Tiered Reasoning for Intuitive Physics (TRIP) is
proposed (Storks et al., 2021), which enables a
multi-tiered evaluation of machines’ reasoning pro-
cesses. Though current several baseline systems
can achieve high accuracy (78%) on TRIP, only
a small portion (11%) of prediction is supported
by proper evidence. The main task of this project
is to modify the baseline system and improve the
system performance, especially consistency and
verifiability.

2 Related Work

Paper(Storks et al., 2021) proposes Tiered Rea-
soning for Intuitive Physics (TRIP) dataset to
enable multi-tiered evaluation of machines’ rea-
soning process. Intuitive physics problem is al-
ways thought to be especially challenging for
machines because physical commonsense is con-
sidered obvious to most humans, and suffers
from reporting bias ((Forbes and Choi, 2017)).
TRIP dataset aims at evaluating not only the end-
task performance but also the process of reason-
ing by story plausibility classification, a com-
mon proxy task for commonsense reasoning prob-
lems. In the paper, three pre-trained language
models are considered: BERT(Jacob Devlin and
Toutanova, 2018), RoBERTA(Yinhan Liu and Stoy-
anov, 2019), and DEBERTA(Pengcheng He and
Chen, 2021). The TRIP dataset utilizes rich an-
notation of physical states, and the physical state
attributes were collected from attribute spaces pro-
posed in the paper(Qiaozi Gao and Chai, 2016)
and (Antoine Bosselut and Choi, 2018). For the
contextual embedding part of the module imple-
mentations, the input is formed following an entity-
first input formulation proposed in the paper(Gupta
and Durrett, 2019). Similar to TRIP’s physical
state classification, existing dataset ProPara(Mishra
et al., 2018), tracks the location and existence of
entities in each sentence, and the paper also intro-
duces models for the state prediction.

3 Dataset

The Tiered Reasoning for Intuitive Physics (TRIP)
is a benchmark for physical common-sense rea-
soning that provides a trace of reasoning for the
ultimate task of plausibility prediction. The dataset
consists of human-authored stories, each describ-
ing a sequence of physical actions. In a given pair
of highly similar stories, most of them are identi-
cal and plausible sentences, but one of the stories



contains an unplausible sentence, thus making the
story physically false. The corresponding task is to
distinguish which story is plausible (Storks et al.,
2021).

The plausible stories were obtained from the
Amazon Mechanical Turk. Each participating
worker is assigned a task to independently write a
new sentence to replace one of the sentences in the
original plausible story, making the replaced new
story no longer realistic in the physical world. Also,
to ensure quality, workers flagged stories that were
incoherent or did not describe physical actions, and
these stories were eliminated after manual verifica-
tion.

TRIP includes annotations for each story that
contain multiple layers of reasoning beyond the
final task. Thus, a hierarchical assessment of the
machine’s coherence becomes feasible. The system
will assess (1) the ability to discriminate plausible
stories, (2) the ability to identify conflicting sen-
tences in implausible stories, and (3) the ability to
identify the underlying physical states in sentences.

4 Approaches

4.1 Automatic Data Augmentation
In the original paper, the author points out that
in low-level tasks such as the physical states clas-
sification and conflict detection, the training loss
decreases slowly. Other evidence such as the model
beginning to overfit also suggests a need for a
larger training data set. Thus, we want to automat-
ically generate more training data on the human-
annotated data set. We proposed the following two
main methods.

4.1.1 Adding Repetition
This method is used to generate new implausible
stories from the existing plausible stories. In the
original plausible story, we focus on any sentences
that contain an entity that has a non-idempotent
physical state. A non-idempotent physical state
cannot be repeated, so duplicating this sentence
will make this story implausible. For example, in
the sentence "John opened the fridge and got out
the pizza.", the "location" state of "pizza" is of the
label "taken out of the container", which cannot be
done twice. Thus, we can replace another sentence
in the story with this sentence and make a new
implausible story. Other non-idempotent physical
state examples are:

• "conscious": true->false

• "wearing": false->true

• "hygiene": true->false

• "power": true->false

• "functional": true->false

• "pieces": true->false

• "contain": false->true

• "mixed": false->true

• "edible": false->true

In the TRIP data set, we perform this data augmen-
tation on the cloze-type subset of the training set.
In a cloze-type story pair, we retrieve the original
plausible story, detect the non-idempotent sentence,
and replace another sentence in the story with this
sentence, and append this new cloze pair to the
training set.

4.1.2 Reordering Sentences
This method is also used to generate new implausi-
ble stories from the existing plausible stories. In the
original plausible story, we focus on a sentence pair
that has an ordering requirement, and we switch
the two sentences to make the story implausible.
For example, entity E in sentence A has a physical
state PS of the label "true->false", and the same
entity E in sentence B has the physical state PS of
the label "false->false". In the original plausible
story, sentence A comes before sentence B, and the
logical relation holds. However, if we switch A
and B, the story will become implausible because
the physical state PS cannot change from true to
false if its previous state is false. Example sentence
pairs are:

• "open": true->false, then false->false

false->true, then true->true

• "wet": true->false, then false->false

• "h_wet": true->false, then false->false

• "conscious": true->false, then false->false

false->true, then true->true

• "clean": true->false, then false->false

• "power": true->false, then false->false

false->true, then true->true



• "solid": true->false, then false->false

• "edible": true->false, then false->false

• "functional": true->false, then false->false

false->true, then true->true

In the TRIP data set, we perform this data aug-
mentation on the order-type subset of the training
set. In an order-type story pair, we retrieve the
plausible-labeled story, scan over the entities and
their corresponding physical states, identify the re-
orderable sentence pairs and switch them. Then we
append the new order-type story pair to the training
set.

We have noticed that the order-type subset al-
ready contains this consideration, as there are sev-
eral stories based on the same story ID, and the
difference among them is the ordering of certain
sentence pairs. However, this annotation is done by
humans and doesn’t cover all possible reordering
of sentences. Our algorithm can detect all permu-
tations of reorderable sentence pairs, and compare
them to existing stories in the order-type subset
to avoid duplications. In this way, our algorithm
makes the most of one plausible story, and this data
augmentation can also be applied to future human
annotation processes in generating the order-type
subset.

We believe that by adding these automatically
generated data to the training set, the model can
learn the implied relationship and thus delivers bet-
ter performance.

4.2 Improvement on the Loss Function

The previous paper uses four loss functions for
training the tiered baseline system, including Lp

for precondition classification, Lf for effect classi-
fication, Lc for conflicting sentence detection, and
Ls for story choice classification. Based on the
four loss functions, it trains the baseline model’s
parameters through gradient descent on the overall
loss L, which is a linear combination of the four
loss functions:

L = λpLp + λfLf + λcLc + λsLs

Results in the paper show that using all losses
gives the best accuracy while omitting story choice
loss gives the best consistency and verifiability.

4.2.1 Change the loss weights
Limited loss weight combination has been tested
in the paper. Thus, we tried more combinations
in this project. To get a comprehensive view, we
plan tested the new combiantions both on origianl
dataset and augmented dataset. Previous paper has
shown that omitting story choice loss (λs) gives
the best performance. Thus, we kept λs = 0. The
following is the set of weight combinations that we
have experimented on:

No. λp λf λc λs

1 0.4 0.4 0.2 0.0
2 0.3 0.3 0.4 0.0
3 0.2 0.2 0.6 0.0

Table 1: Loss Weight Combination

4.2.2 Step-by-step weight
We noticed that for the baseline model, the best ac-
curacy and the best verifiability fail to exist in the
same model. We guess that this may result from the
model’s failure to grab enough information about
each step. The selection of loss functions is an im-
portant factor influencing the information a model
gets. Thus, the idea we come up with to deal with
the problem is to use a step-by-step overall loss.
That is, instead of training the model’s parameters
using a linear sum of the four loss functions at a
time, we train the parameters based on different
loss functions step by step. We first train the model
using the loss for precondition classification (Lp),
then further trained the model based on the pre-
viously trained model using the loss function for
effect classification (Lf ). Repeat the same proce-
dure for loss for conflicting sentence detection (Lc)
and story choice classification (Ls).

4.3 Improvement on the Conflict Detector

Currently, although the baseline system is relatively
accurate in determining whether sentences are plau-
sible, it is not very consistent in predicting which
pairs of sentences conflict. We hope to improve the
conflict detector module of the baseline system as
a way to raise the consistency of the predictions.

As can be seen from the previous experiments,
when the physical state logit from the precondi-
tion and effect classifier is added to the input of
the conflict detector, the improvement in accuracy,
consistency, and verifiability is not significant, and
is even lower than the performance when only the



contextual embedding of sentence-entity pairs is
used as input. The performance of the model is
horribly low when using only physical states as
input (Storks et al., 2021).

We hope that a module can be added to prepro-
cess the physical state to extract more information
for the purpose of improving the performance of
the baseline system, as shown in Figure 1.

4.3.1 Structure of the Physical State
Processing Module

Adding a module means that before the physical
states of an object enter the conflict detector mod-
ule, they enter another module that forces the model
to learn information about the physical states of the
object. The more specific structure of the new phys-
ical state processing module is shown in Figure 2.
The input of the module is the physical state of the
object and the output is the physical state of the
object after being processed.

The object’s physical state is a simple concate-
nation of the precondition states of the object and
the effect states of the object. The shape of this
variable is:

(B ×N × E × S,M)

where B is the batch size, N is the number of
stories, E is the number of entities, S is the number
of sentences, and M is the state size. In order to
keep the model simple and clear and to change the
original model as little as possible, we wanted the
new module to be consistent in the shape of its
inputs and outputs.

4.3.2 Module Selection
To ensure that the inputs and outputs have the same
shape and that no additional variables are added,
we will consider the following modules.

Linear Module. This module applies a linear
transformation to the input data. The conversion
formula is y = xAT + b. The shapes of its input
and output are:

Input : (∗, Hin)

Output : (∗, Hout)

where ∗ means any number of dimensions, Hin is
the input dimension and Hout is the output dimen-
sion. Here, ∗ refers to B × N × E × S and Hin

and Hout are set to M .
RNN Module. This module applies a multi-

layer Elman RNN with ReLU non-linearity to an

input sequence. It requires the initial hidden state
in addition to the input sequence. The shapes of its
input, initial hidden state, and output are:

Input : (B,L,Hin)

h0 : (num_layers,Hout)

Output : (B,L,Hout)

where L is the sequence length. Here, the number
of layers is set to 1, L is set to N × E × S, and
Hin and Hout are set to M .

LSTM Module. This module applies a multi-
layer long short-term memory (LSTM) RNN to an
input sequence. It requires the initial hidden state
and the initial cell state in addition to the input
sequence. The shapes of its input, initial hidden
state, initial cell state and output are:

Input : (B,L,Hin)

h0 : (num_layers,Hout)

c0 : (num_layers,Hcell)

Output : (B,L,Hout)

where Hcell means the hidden size. Here, the num-
ber of layers is set to 1, L is set to N ×E ×S, and
Hin, Hcell and Hout are set to M .

GRU Module. This module applies a multi-
layer gated recurrent unit (GRU) RNN to an input
sequence. It requires exactly the same inputs and
outputs and the same shape as RNN, which is not
repeated here.

Tranformer Encoder. This module is made up
of a self-attention and feed-forward network, based
on the paper Vaswani et al. (2017). The shapes of
its input and output are:

Input : (∗, d_model)

Output : (∗, d_model)

where d_model is the number of expected features
in the input. Here, d_model is set to M .

5 Evaluation

The TRIP dataset evaluates the performance of the
model from three perspectives in order to test the
model’s coherent reasoning ability.

Accuracy. This metric tests the ability of the
model to identify the correct plausible story, us-
ing the percentage of correct instances as the test
criterion.



Figure 1: Proposed tiered reasoning system in Storks et al. (2021). The red box represents where we want to add a
new module.

Figure 2: Detailed structure of the new physical state
processing module.

Consistency. This metric tests the ability of the
model to identify conflicting sentence pairs in an
implausible story based on the identification of the
correct plausible story. It uses the proportion of
correct sentence pairs as the test criterion.

Verifiability. This metric tests the ability of the
model to identify the physical state of the object
causing the conflict based on identifying conflict-
ing sentence pairs in the implausible story and the
correct plausible story. It uses the proportion of
correct conflicting physical states as the test crite-
rion.

In the actual test, we will see that the indi-
cators of the model show the following relation-
ship: accuracy ≥ consistency ≥ verifiability.
We expect a model whose judgments pass all the
test steps, i.e. whose performance exhibits the
characteristics that accuracy ≈ consistency ≈
verifiability.

Currently, the baseline model in Storks et al.
(2021) has very low verifiability although it

achieves a high value in accuracy. In the next ex-
periments, we mainly focus on the verifiability of
the improved model as well and compare it with
the verifiability of the baseline.

6 Results

6.1 Reproduction of Baseline

First, we reproduced the results from Storks et al.
(2021). Figure 3 shows that the highest accuracy
of this system is about 77.02% and the highest
verifiability is 10.25%, which is very low. Not
only that, we can find that the models all reach the
best performance at epoch 5, after which neither
accuracy nor verifiability can be improved, but only
slowly decline.

Figure 3: Accuracy (blue) and verifiability (red) for best
tiered RoBERTa system on the validation set trained on
TRIP for 10 epochs.

Our purpose is to improve a model whose verifi-
ability can be higher than 10.25%, while accuracy



does not have a significant decrease.
For our experiments, we used the learning

rate(1e-5) and batch size(1) same as the baseline
model in the paper.

6.2 Automatic Data Augmentation

For the method mentioned in 4.1.1, we select three
physical states: "location", "conscious", and "wear-
ing". From a total of 799 cloze-type stories in the
training set, we generate 49 new implausible sto-
ries.

For the method mentioned in 4.1.2, we select
nine physical states: "open", "wet", "conscious",
"h_wet", "clean", "power", "solid", "edible", and
"function". From a total of 2330 order-type stories
in the training set, we generate 7 new implausible
stories(the duplicated ones are removed and thus
not counted).

6.3 Improvement on the Loss Function

The following table shows the performance of the
system with different loss weight training on the
dataset TRIP.

Loss Weight Accuracy Verifiability Consistency
(.4,.4,.2,0) 77.0 10.2 28
(.3,.3,.4,0) 79.2 7.1 32.3
(.3,.3,.4,0) 77.8 10.8 35.5
(.2,.2,.6,0) 79.5 8.5 33.0
(.2,.2,.6,0) 77.3 10.4 35.8

Table 2: Metrics for the different loss weight on the dif-
ferent training set of TRIP. Black loss weight is trained
on original TRIP dataset while brown loss weight is
trained on augmented TRIP dataset. The first row repre-
sents the original baseline.

From the table above, we see that the model with
λp = 0.3, λf = 0.3, λc = 0.4, λp = 0.0, that using
the augmented data gives the best performance. In
detail, comparing row 1 and row 2, row 1 and row
4, we see that increasing the weight of conflict
detector loss improves consistency. Comparing
row 2 and row 3, row 4 and row 5, we find that
data augmentation improves the verifiability and
consistency.

The following table shows the performance of
the system with a step-by-step loss function for
different epoches.

Table 3 shows that though using the step-by-step
loss function slightly improves the end-task accu-
racy (baseline accuracy 77%), this method does not
improve the verifiability.

Epoch Accuracy F1 Verifiability
3 78.3 78.3 0.0
5 75.6 75.5 0.0
7 74.7 74.5 0.0

Table 3: Metrics for step-by-step loss weight on the
training set of TRIP.

6.4 Improvement on the Conflict Detector

We added different modules to process the physi-
cal state of the object separately and checked the
performance of the new model. The trends of ac-
curacy, f1 score, and verifiability of the original
model and the new models over the course of train-
ing 10 epochs are shown in Figure 4. As can be
seen, regardless of the model, their accuracy and f1
scores are very close and it is difficult to continue
improving after about 3-4 epochs. Among them,
the system with the addition of the LSTM module
can reach the highest accuracy, up to 80%, while
the other models can only reach a maximum of
79% accuracy.

For verifiability, the time to reach the maximum
verifiability varies from system to system, but all
reach the maximum within 10 epochs. After reach-
ing the maximum point, the verifiability of the sys-
tem starts to fluctuate erratically or decrease slowly.
This means that continued training will not improve
the verifiability of the system. Among them, the
system with the addition of the LSTM module and
the addition of the RNN module can achieve the
highest verifiability.

The best performance achieved in 10 epochs for
each system is presented in Table 4. Some systems
have their verifiability beyond the verifiability of
the baseline after adding modules, including sys-
tems that add a linear module, systems that add
an LSTM module, and systems that add an RNN
module. Among them, the system with the addition
of the linear system has only a small improvement
in verifiability, while the system with the addition
of the LSTM module and the system with the addi-
tion of the RNN module were able to achieve the
highest verifiability, i.e., 11.2%. Other systems are
unable to surpass the verifiability of the baseline,
including systems that add the GRU module and
systems that add the Transformer Encoder module.
This may be due to the fact that these two modules
are too complex to be adequately trained.

When we focus on the accuracy of the system,
we find that only the system with the addition of



Figure 4: Accuracy (left), f1 score (middle), and verifiability (right) for the models trained on TRIP for 10 epochs.
The models are the original baseline (blue), the model with a linear module (red), the model with an RNN module
(yellow), the model with an LSTM module (green), the model with a GRU module (orange), and the model with a
Transformer Encoder (aqua).

the LSTM module can improve verifiability while
the accuracy is not only not lower than the baseline
one, but also has a slight improvement to 80%. The
system with the addition of the RNN module can
also get 11.2% verifiability, but at the same time
accuracy is lower than that of baseline. Therefore,
we consider the system with the addition of the
LSTM module to be optimal.

Model Accuracy F1 Verifiability
Baseline 77.0 77.0 10.2
Linear 76.7 76.7 10.6
RNN 75.2 75.1 11.2

LSTM 80.4 80.4 11.2
GRU 76.7 76.7 9.9

Transformer 77.0 77.0 9.0

Table 4: Metrics for the best systems on the training set
of TRIP. Compared to the original baseline.

7 Discussion

7.1 Automatic Data Augmentation

For the two augmentation methods, we didn’t apply
the augmentation on all eligible sentences. This is
because we don’t want the model to exploit these
trivial features and learn bias, which will result in
overfitting. As the newly-generated data is small in
size, we propose that more types of data augmen-
tation can be designed, such as adding negations,
passive voice transformation, tense conversion, and
paraphrasing. While constructing the algorithms
or transformations can be time-consuming, there
exist state-of-the-art methods for automating the
data augmentation process. TANDA(Ratner et al.,
2017) proposes a framework to learn the augmen-

tation by modeling data augmentation as transfor-
mation functions sequences and has achieved high
efficacy on text dataset. Future work may consider
this model to enlarge the dataset in a time-saving
fashion.

Regarding the physical states annotations in the
TRIP dataset, more detail should be provided. We
propose that objects of a verb can be included in
the annotation. For example, the ’location’ state
can only be labeled as ’put on’, ’put into container’,
’taken out of contained’, etc. In this case, the sys-
tem learns nothing from the object or the container
such as a fridge or a bowl. This information should
be fed into the system since the system makes its
decision largely based on the precondition and ef-
fects of the physical states. A separate machine
learning model can be applied to learn this relation-
ship and enhance the annotation. What’s more, a
total of only 20 physical state attributes are selected.
We suggest that more attributes and labels can be
added such as human moods, humans relationship,
ability, etc.

As TRIP is a relatively small dataset, we can
also fine-tune the pre-trained model based on other
NLP commonsense reasoning dataset. ROCSto-
ries(Mostafazadeh et al., 2016) is a corpus of 50k
commonsense stories each consisting of 5 sen-
tences and provides a hypothesis or implication
for each story. ROCStories is very similar to
TRIP in nature. Another commonsense dataset,
ATOMIC(Sap et al., 2018), is a collection of 900k
textual variables of if-then relations, and can help
models learn the inferential relationships in events.
By fine-tuning the pre-trained model, we hope the
system can capture temporal and causal relation-
ships between common daily events from other



mature and large datasets, thus making up for the
small size of TRIP.

7.2 Experiment on the Loss Weight with
Augmented Dataset

From Table 2, we find increasing the weight for
conflicting sentence detection loss gives an im-
provement in both accuracy and consistency. If
training the augmented data, the performance in
verifiability and consistency further improves. We
think the improvement may result from the defi-
nition of consistency and verifiability. Since both
consistency measures how many stories that are
identified correctly with the exact correct conflict
pairs and verifiability measures how many stories
give both correct conflict pairs and physical states,
the conflict detector plays a major role in evalu-
ation. Thus, it is reasonable that increasing the
weight for conflict detection loss improves consis-
tency obviously.

Moreover, by comparing row 2 and row 3, row
4 and row 5 in Table 2, we find augmented dataset
improves verifiability and consistency obviously.
This shows, by adding repetition and reordering
sentences, the model hopefully learned the implied
information as stated in section 4.1.1 and 4.1.2.

We also tried step-by-step loss on all loss func-
tions for the model. Table 3 shows though the
model still gives high (even higher) end-task ac-
curacy, unfortunately, there is no improvement in
verifiability. We think the reason may be that train-
ing the model step by step will weigh more for later
loss function. For this system, story choice classi-
fication weighs the most. Thus, the classification
reaches a higher accuracy. However, step-by-step
loss pays less attention to the first few losses like
loss for physical state and conflict detector, making
the performance of consistency and verifiability not
good.

7.3 Experiment on the Conflict Detector

When we add new modules, we keep all the outputs
of the recurrent layers (including RNN, LSTM, and
GRU) in order to ensure that the input and output
shapes are consistent. In fact, for these recurrent
layers, we usually only need the output of the last
hidden state, because the output of the first few
hidden states has not gone through many cycles
and does not contain much information. There
is no way to guarantee whether this information
serves as an enhancement to the overall system or

as redundant information that disrupts the system’s
judgment.

Also, the output of recurrent layers should go
through a fully connected layer to change its output
to the desired output shape, while we directly set
the output of recurrent layers to the desired shape.
We made the change for the sake of the simplicity
of the system, but we do not know if the change will
have any additional impact on the interpretability
of the output.

Finally, the initial state setting of the hidden state
and the cell state is also an issue. Currently, we
set them to 0. In fact, there is the option of setting
them to random numbers, which may affect the
stability of the system, but may also improve its
performance of the system further. We have not yet
made such an attempt.

Therefore, if available, we can try to (1) keep
only the output of the last hidden state of recurrent
layers, (2) modify the output of recurrent layers to
our desired shape by a fully connected layer, and (3)
compare the effect of different initial state settings
of hidden state and cell state on the performance of
the system.

8 Conclusion

In this project, we not only practiced our ability
in reading and reproducing a paper, but also tried
to propose our new ideas to improve the model.
We have all first understood the target paper thor-
oughly and successfully reproduced the result, just
like what we have learned in homework 4. Further-
more, we consider improving the baseline model
from three different aspects: dataset augmentation,
loss function and system architecture. We then eval-
uated our revised models using different metrics:
accuracy, consistency and verifiability. Compared
with the results in the paper, most of our meth-
ods have successfully improved the performance
while some haven’t. We thoroughly analysed all
the methods with their corresponding results, trying
to explain the result. In the project, we distributed
the work properly as well as cooperated with each
other. Through trials and fails, we have earned a
deeper understanding of NLP problems and learned
to solve them at the same time.

Acknowledgements

This work was a course project for EECS 595 Natu-
ral Language Processing at the University of Michi-
gan. We sincerely thank Professor Joyce Chai and



the Graduate Student Instructors Peter Yu, Martin
Ma, and Shane Storks for their help in our work
and for their helpful comments and suggestions on
our project.

References
Ari Holtzman Corin Ennis Dieter Fox Antoine Bosselut,

Omer Levy and Yejin Choi. 2018. Simulating action
dynamics with neural process networks. Proceed-
ings of the 6th International Conference on Learning
Representations(ICLR 2018).

Maxwell Forbes and Yejin Choi. 2017. Verb physics:
Relative physical knowledge of actions and objects.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics.

Aditya Gupta and Greg Durrett. 2019. Effective use of
transformer networks for entity tracking. Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Linguistics.

Kenton Lee Jacob Devlin, Ming-Wei Chang and
Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. Proceesings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies(NAACL HLT 2019).

Bhavana Dalvi Mishra, Lifu Huang, Niket Tandon,
Wen-tau Yih, and Peter Clark. 2018. Tracking state
changes in procedural text: A challenge dataset and
models for process paragraph comprehension.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A corpus
and evaluation framework for deeper understanding
of commonsense stories.

Jianfeng Gao Pengcheng He, Xiaodong Liu and Weizhu
Chen. 2021. Deberta: Decoding-enhanced bert with
disentagled attention. arXiv:2006.03564.

Shaohua Yang Qiaozi Gao, Malcolm Doering and Joyce
Chai. 2016. Physical causality of action verbs in
grounded language understanding. Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics(ACL 2016).

Alexander J. Ratner, Henry R. Ehrenberg, Zeshan Hus-
sain, Jared Dunnmon, and Christopher Ré. 2017.
Learning to compose domain-specific transforma-
tions for data augmentation.

Maarten Sap, Ronan LeBras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A. Smith, and Yejin Choi. 2018.
Atomic: An atlas of machine commonsense for if-
then reasoning.

Shane Storks, Qiaozi Gao, Yichi Zhang, and Joyce Chai.
2021. Tiered reasoning for intuitive physics: To-
ward verifiable commonsense language understand-
ing. arXiv preprint arXiv:2109.04947.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Naman Goyal Jingfei Du Mandar Joshi Danqi Chen
Omer Levy Mike Lewis Luke Zettlemoyer Yin-
han Liu, Myle Ott and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv: 1907.11692.

https://doi.org/10.48550/ARXIV.1805.06975
https://doi.org/10.48550/ARXIV.1805.06975
https://doi.org/10.48550/ARXIV.1805.06975
https://doi.org/10.48550/ARXIV.1604.01696
https://doi.org/10.48550/ARXIV.1604.01696
https://doi.org/10.48550/ARXIV.1604.01696
https://doi.org/10.48550/ARXIV.1709.01643
https://doi.org/10.48550/ARXIV.1709.01643
https://doi.org/10.48550/ARXIV.1811.00146
https://doi.org/10.48550/ARXIV.1811.00146

