Fully Online Decision Transformer for Reinforcement Learning

Austin Anhkhoi Nguyen / ngaustin
Creighton Glasscock / creiglas
@umich.edu

Abstract

Devising deep reinforcement learning (RL) al-
gorithms with better sample efficiency, stability,
and applicability is a cornerstone research prob-
lem in machine learning. While many model-
free approaches have proposed learning in pol-
icy space or value space directly, others have
applied the Transformer neural network archi-
tecture to model RL as a sequence modeling
problem. Previous approaches have advocated
for the use of Transformers in offline settings,
where a dataset is provided to the Transformer
to fit. However, the application of the method
directly to online settings, where data has to be
gathered through the policy’s own exploration,
has been relatively unexplored. This approach
poses the problem of exploration: how can an
architecture that does not directly optimize re-
wards derive a strong policy? As such, in this
work, we adapt the Decision Transformer (DT)
architecture to fully online settings, where ex-
ploration is aided by an RL policy that is trained
in parallel. We show that the combination of
the DT and exploratory RL policy yields perfor-
mance that matches and sometimes surpasses
state-of-the-art RL algorithms. Also, we show
that the standard deviation of returns in inter-
mediate evaluation episodes is lower than that
of typical RL policy training. We note several
key attributes of the DT that allow it to achieve
such performance.

1 Introduction

Recent work in the field of Natural Language
Processing has centered around the Transformer
(Vaswani et al., 2017), an attention-based archi-
tecture that has shown flexibility and utility in se-
quence modeling problems common within the
field. This success has resulted in a flurry of fur-
ther work on the Transformer, with new work pro-
viding many new architectures and hardware solu-
tions designed to exploit the power of the Trans-
former. Historically, Transformers have shown few
useful applications within the field of Reinforce-

ment Learning, which contains problems less read-
ily applicable to the sequence modeling problems
in other fields which easily beget the use of the
Transformer. This work proposes a method that
incorporates the Transformer into online settings.
In this work, we adapt the existing Decision
Transformer architecture, a recent development
which, for the first time, successfully applies ad-
vancements in Transformer architectures to offline
Reinforcement Learning (RL) problems. We aim to
build upon the work behind Decision Transformer
to bring the architecture’s strengths to the problem
of online Reinforcement Learning, which has an
increased variety of real-world use cases.

2 Related Work

Recent work has introduced the Decision Trans-
former architecture (Chen et al.), which models of-
fline Reinforcement Learning as a sequence model-
ing problem, thereby breaking from previous work
in RL and utilizing a Transformer to guide the
choice of optimal action in pursuit of the desired
return. This strategy allows the architecture to draw
upon the wealth of Transformer-related advances
in the field of Natural Language Processing, such
as the BERT architecture (Devlin et al., 2018). The
Decision Transformer is made possible by the flex-
ibility of the Transformer architecture and has seen
great success in the problem of offline Reinforce-
ment Learning due to the ability of the transformer
to recognize relationships between states and re-
turns.

The drawback of the Decision Transformer is
that its implementation is constrained to offline
learning only, which restricts its real-world use
cases. In particular, by reducing training to a se-
quence modeling problem, the agent only has the
ability to make decisions based on a pre-existing
dataset. The agent can therefore effectively exploit
its initial knowledge but has no means to explore
its environment to update this initial knowledge

with ongoing observations. In our work, we aim to
build upon the Decision Transformer by expanding
it to an online setting by pairing the offline training
of the Decision transformer with an approach to
online exploration.

(Zheng et al., 2022) then built on this approach
to allow for online fine-tuning of a Decision Trans-
former, and was the first to apply this architecture
to the online setting in some capacity. However, de-
spite this capability to fine-tune a Decision Trans-
former in an online setting, this implementation
still requires offline pre-training of the Decision
Transformer and thus some pre-existing informa-
tion about the environment. This implementation
trains on the MuJoCo benchmark (Todorov et al.,
2012), a series of three-dimensional physics simu-
lations which require online learning. For the of-
fline pre-training of the model, this implementation
sources D4RL (Fu et al., 2020) for pre-baked obser-
vations about the MuJoCo environments in ques-
tion. Other approaches have utilized transformers
for value decomposition (Khan et al., 2022) and hi-
erarchical learning (Correia and Alexandre, 2022).
However, to our knowledge, our implementation
is the first full application of the Decision Trans-
former to the online setting without the need for
offline pre-training.

Other work has directly applied reinforce-
ment learning algorithms in single-agent settings.
Vanilla policy gradient (Sutton et al., 1999) uses
Monte Carlo Q-updates to optimize a policy
through on-policy updates. More recent approaches
propose actor-critic frameworks where neural net-
works are used to estimate both state-action values
and policies. Deep Deterministic Policy Gradients
(Lillicrap et al., 2015) is an example of a determin-
istic actor-critic method that uses Gaussian noise
for exploration. Its closely related refinement to the
algorithm, Twin-Delayed Deep Deterministic Pol-
icy Gradients (TD3), particularly addresses value
function overestimation by minimizing between
two value networks (Fujimoto et al., 2018). Other
methods such as Soft Actor-Critic (Haarnoja et al.,
2018) make use of entropy regularization to encour-
age exploration.

3 Online vs Offline Learning

Neither offline nor online learning is inherently
superior to the other — these two settings for rein-
forcement learning simply have different starting
assumptions. Offline learning assumes access to

a pre-existing dataset, but cannot interact with the
environment during training. On the other hand,
online learning assumes the lack of a pre-existing
dataset, instead opting to build one iteratively via
live interaction with the environment. The goal of
the fully online setting is to “solve” a game through
trial and error in the environment itself. This ca-
pability proves advantageous in a broad array of
real-world applications because it allows agents to
solve games from scratch, figuring out the optimal
actions through their own exploration without the
need for prior knowledge about the environment.

In regards to limitations, the current Decision
Transformer architecture, one that models the en-
vironment as a sequence modeling problem, does
not reason about rewards in the environment. As
a result, the Decision Transformer architecture is
ineffective in deciding how to explore an environ-
ment intelligently. Instead, at a high level, it simply
imitates state transition data to achieve a given tar-
get return. As long as it has trained on data that has
achieved that return, it is effective in replicating
that return. In a sequence modeling framework, the
Decision Transformer is well-equipped to find pat-
terns in data but does not optimize a function that
finds high rewards. Our approach aims to provide
this capability.

4 Approach

In this section, we outline the proposed approach
to adapt Decision Transformers (DT) to online set-
tings. Given the lack of any assumption about a
pre-existing dataset, such an approach must find a
way to gather training data for the model to fit. We
propose various methods in which this dataset can
be incrementally built over time while concurrently
improving the DT policy.

4.1 DT-Based Exploration

First, we will test a direct application of the DT
algorithm to the online setting. We will make the
decision transformer stochastic in its action outputs,
sampling from a multivariate Gaussian with a diag-
onal covariance matrix, as shown in (Zheng et al.,
2022). The decision transformer policy will be used
to explore the environment and gather transition
data, using a sampled return target as input from a
univariate Gaussian. After every N episodes, we
will fit the DT to the trajectory data and fit the re-
turn distribution to the dataset. This cycle of data
collection and fitting is shown in Figure 1, and the

fully enumerated algorithm is shown in Algorithm
1.

Algorithm 1: Fully Online Decision Trans-
former Naive

Environment Input: Decision Transformer mg, Number
of Iterations 7', Proportion of
Trajectories for Return Target 3,
Train Every N, Train Iterations

Current , & Nirain, Batch Size B, Learning Rate
State A, Replay Buffer R, Univariate
* Gaussian Sampler p
o 1 for each iteration i of T' do
- DEC;SIOI'\ 2 Sample R;,- ~ p. Return 0 if p has not
ranstormer been fit to data yet
3 Use 7 to gather trajectory information 7
Trajectory 4 Store 7 in R
- '"f°'ma“°; | s | ifi%N == 0 then
radient Update
l T 6 || f0r Ny steps do
7 Sample batch B ~ R
8 Update Decision Transformer
Trainer ReplagTBuﬁer parameters § with B according
to Algorithm 2
A 9 Fit p to proportion /3 of most recent
Past Returns | trajectory returns in R
Signal To Train
Y
Train DT Every N Sl
. Return
episodes
Target
17 A
Episode Counter - —
Episodic Manager P Algorithm 2: Decision Transformer Up-

date Function

Input: Decision Transformer 7y, Learning
Rate A, Batch B of (Returns-to-go,

Figure 1: Full architecture of the fully online decision . .
g Y States, Actions, Time step)

transformer implementation. The decision transformer

will stochastically choose actions to explore the envi- 1 Let {;}j_, be the sequence of

ronment and store trajectories in a replay buffer. The {Ri, i, a4, i}y

DT will fit to sampled batches from the replay buffer 2 Let key k;, query g;, and value v; be mapped
every N episodes. Target returns are determined by fit- via linear transformations from z;

ting a univariate Gaussian to a subset of returns from

w

t trajectories, and sampling from the distribution t Let mo({z}in1) =
pas ra]ec ories, an samp lng Trom the distribution to Z‘;Lzl Softma$({<q“kj/>}?l:1)j 'Uj

determine future episode target returns.

£

Qpreds = W@({xi}zﬂzl)
L= mean((apreds - a)2)
6 0 =0—VyL

wm

The intention in keeping our transformer stochas-
tic is to provide a natural way for the Deci-

sion Transformer to explore the environment and,
through random chance, achieve higher return tra-
jectories that it has not previously seen. In effect,

the replay buffer will provide higher return trajecto-
ries for the transformer to imitate in the future. The
addition of a higher return trajectory also shifts the
distribution of past returns to a higher mean. This
implies that the algorithm will more likely attain
higher-return targets to explore later on.

4.2 RL-Based Exploration

It is important to note that the DT policy itself may
not be effective in exploration. Because training oc-
curs at the trajectory level, the DT may have trouble
exploiting information in state transitions to max-
imize rewards. As such, the DT does not reason
about reward optimization. Instead, it looks at past
trajectory information and, at a high level, imitates
behavior that yields certain return targets. Further-
more, in the offline case, the DT assumes trajecto-
ries in the dataset are favorable or have some sem-
blance of optimality. However, this is not the case
in online learning, where trajectories are far more
likely to be suboptimal, or even useless. Because
the DT’s performance is only as strong as that of
its dataset, we propose a method to aid exploration.

The exploration method should be able to reason
directly about rewards and optimize actions to yield
high returns. A natural selection for this explo-
ration method is to train a reinforcement learning
policy in parallel with the DT. The intuition behind
this method is to gather useful, high-return trajec-
tory information using the reinforcement learning
algorithm to jump-start the training of the DT. Then,
the DT will be more informed in its decisions when
stochastically exploring the environment.

The choice of reinforcement learning algorithm
is discussed in the following section. To weave in
the exploratory reinforcement learning algorithm,
we stochastically choose between using the explo-
ration (RL) policy and the DT policy to gather data
every episode. We opt for the algorithm to choose
between the policies in every episode as opposed
to in every action in order to ensure that each trajec-
tory is generated by a single policy. This allows for
on-policy training if the chosen exploration policy
requires it, assuming only trajectories generated by
the exploration policy are used to train the explo-
ration policy. Also, this provides consistency. It is
noted in previous papers that the DT is able to draw
its strength in offline training because its use of
attention allows it to differentiate which policy gen-
erated various trajectories in the dataset. Keeping
trajectories generated by a single policy is meant

to take advantage of this.

We denote the probability in which the explo-
ration policy is chosen over the DT policy as a.
This value is decreased linearly over training itera-
tions (per episode). By doing this, the responsibil-
ity of exploration and policy optimization is shifted
over to the DT policy.

4.3 Choice of Reinforcement Learning
Algorithm

We apply various algorithms to help gather better
trajectories for the DT to train on. First, for its sim-
plicity, we first use an approach akin to the Vanilla
Policy Gradient (VPG) algorithm as the exploration
policy. This approach is outlined in Algorithm 3.
It is known that Monte Carlo sampled Q-values
for training policy gradients typically have high
variance and do not typically perform as well in
complex environments compared to more state-of-
the-art approaches. However, the implementation
serves as a good baseline to observe whether the
DT can reason about the environment with rela-
tively suboptimal trajectories.

We also implement a more state-of-the-art re-
inforcement learning algorithm as the exploration
policy: Twin-Delayed Deep Deterministic Policy
Gradients (TD3). TD3 is an actor-critic method
that outputs deterministic actions, where Gaussian
noise is added to allow for additional exploration.
There are two strengths to TD3: a delayed pol-
icy update and minimization between two target
Q-networks when making gradient updates. The
former allows for additional training stability so
that value networks are sufficiently trained before
being used to update the policy. The latter helps
reduce Q value overestimation, an issue commonly
present in deep Q-networks. This algorithm was
chosen for its powerful learning ability and the
omission of other optimizations such as entropy
loss, allowing for easier, quicker finetuning. The
algorithm for TD3 is outlined in Algorithm 4

Next, we outline the full online decision trans-
former architecture and algorithm. These are
shown in Figure 2 and Algorithm 5.

Algorithm 3: Policy Gradient Update Func-

tion

Input: RL Policy ,, Batch Size B,

Learning Rate)\, Discount Factor +,
Replay R

1 for each episode do

2
3

10

11
12

13
14
15

for each iteration in episode do

Observe state s and select action
0~ mh(s)

Execute a in the environment

Observe next state s’, reward r, and
done signal d to indicate if s’ is
terminal

Store (s, a,r,s',d) in R

If s’ terminal, reset the environment

if |R| > B then

Gather a batch size B of

{za}i "t = (siy @iy, sidi) ey
Calculate baseline

b = mean(r;!_;)
Calculate scale s = std((r;}_;)
Calculate returns to go

Ry =Y, (rj — b)/s
L = £ 30 log(my (ailsi)) * R
0 =60"—-VeolL
Clear Buffer R

Algorithm 4: Twin-Delayed Deep Deter-
ministic Policy Gradients Update Function

-

~

10
11

12

13

14

15
16

17

18

Input:

RL Policy 7, Q functions Q,,
Qq,, Replay R

Set target parameters equal to main
parameters Htarget < 0» wtargetl <~ 1?1 »

wtargetg — ¢2
for each episode do

for each iteration in episode do

Observe state s and select action
a = clip(’ﬂ'é/(s) + € Qlow, ahigh)
where € ~ N

Execute a in the environment

Observe next state s’, reward r, and
done signal d to indicate if s’ is
terminal

Store (s,a,r,s',d) in R

If s’ terminal, reset the environment

if time to update then

for j in range number of updates do
Sample batch size
B = (s,a,r,s',d) from replay
R
Compute target actions
a'(s') = clip(my (s') +
clip(e, —¢ C)a Alow ahigh)
where € ~ N(0,0)
Compute targets
y(T’, 8/7 d) =r+ 7(1 -
d) min;—1 2 Qd)targeti (s,a'(s"))
Update Q functions for i=1,2
vwi ﬁ Z(s,a,r,s/,d)ER(Qwi -
y(r, ', d))?
if j mod policy delay == 0 then
Update policy
Vo Zser Qun (s, ()
Update target networks for i
=12 ¢target¢ <~
pwtargeti + (1 - p)wz
L etarget — petarget + (1 _p)e

Environment

Chosen Action

Current i ‘ Current
State Combined State
Module |4 d

Decision
Transformer

Exploration
RL Policy

Gradient Update Gradient Update

Transition
Information

Trajectory

2 Trainer
Information

'y

Sample Sample

Replay Buffer Replay Buffer
DT RL

Signal To Train

Episodic Manager

Train DT and
Exploration Policies
with Independent
Frequencies

I— Episode Counter

Use o
Choose DT

or RL policy

Figure 2: Full training architecture when the reinforce-
ment learning exploration policy is included. The two
policies are trained in parallel and independently, taking
batch updates at different frequencies. Trajectory infor-
mation is stored in separate buffers and the policy choice
is decided every episode. Actions from both policies are
filtered through a combined module, which determines
which action gets executed in the environment.

4.4 Implementation

We adopt the Online Decision Transformer code
from Daniel Lawson. We also adapt code from

Algorithm 5: Fully Online Decision Trans-
former

(ST

13
14
15
16

17

18

Input: Decision Transformer 74, RL

Exploration Policy 7,.;, Number of
Iterations IV, Replay Buffer Ry,
Replay Buffer for RL Policy R,;,
Univariate Gaussian Sampler p,
Initial Alpha a4, Final Alpha
afinal, All other Hyperparameters
are specified in the DT and RL
policy specific algorithms.

a = Qinit
for each iteration i of N do

Sample R, ~ p. Return O if p has not
been fit to data yet
Choose policy
T~ (g = (1 — a),m =)
Use 7 to gather trajectory information 7
Store 7 in Ry
if (Used ,; and m,; is on-policy) or (7,
is off-policy) then
L Store 7 in R,

if i%T == 0 then
for Nypqin steps do
Sample batch B ~ R
Update Decision Transformer
parameters 7 according to
Algorithm 2

if :%T,; == 0 then
for Nyyginri Steps do
Sample batch B,; ~ R
Update Exploration policy
paramters 7,; according to
Algorithm 3 or 4

Fit p to proportion 3 of past trajectory
returns in R
Update « linearly towards o f,q1

Vanilla Policy Gradient and TD3 from OpenAlI’s
SpinningUp repository. To run experiments, we
use the University of Michigan’s Great Lakes Com-
puting Clusters.

5 Evaluation

We test our implementation on the MuJoCo testbed,
a collection of three-dimensional physics simula-
tions designed for reinforcement learning. MuJoCo
contains multiple tasks, each of which provides a
challenging online task focused on spatial reason-
ing. For the purposes of this paper, we focus our
testing on the Hopper benchmark. A screenshot of
the replay of the Hopper task is shown in Figure
3, and the goal of the Hopper task is described as
follows, from the Open Al website: “The hopper
is a two-dimensional one-legged figure that consist
of four main body parts - the torso at the top, the
thigh in the middle, the leg in the bottom, and a
single foot on which the entire body rests. The goal
is to make hops that move in the forward (right)
direction by applying torques on the three hinges
connecting the four body parts.” The agent receives
more rewards the further right it is able to move the
hopper, and this reward is used to train the policy.

Figure 3: A screencap of the MuJoCo Hopper envi-
ronment, in which the agent assumes control of the
"hopper" and is tasked with navigating it to the right.

We chose MuJoCo as our testbed for several rea-
sons. It is a widely-used benchmark for online
RL and is the testbed used in the Online Decision
Transformer paper, allowing us to directly replicate

and compare the results of that paper. MuJoCo
provides a diverse set of environments that ran-
domize initial conditions and give agents fine-tune
control, so to succeed on this benchmark, our ar-
chitecture must be capable of effectively reasoning
about the spatial characteristics of the environment.
Figure 4 shows benchmarks by OpenAl for various
RL policies on the MuJoCo Hopper benchmark.
The Y-axis, performance, represents the ongoing
rewards achieved by the agent while playing Hop-
per. Figure 5 is an excerpt from the Online Deci-
sion Transformer paper and represents the rewards
achieved by that architecture during fine-tuning, in
proportion to the reward expected by the decision
transformer. Our goal is to replicate this perfor-
mance with our architecture without the need for
pre-training.

Hopper: PyTorch Versions

— wg — ppo — ddpg — td3 sac

4000

3000

Performance
N
S
3
3

1000

LA

0.5 1.0 15 2.0 25
TotalEnvinteracts 1e6

3M timestep benchmark for Hopper-v3 using PyTorch implementations.

Figure 4: OpenAl SpinningUp benchmarks for various
reinforcement learning algorithm implementations on
the Hopper Environment.

hopper-medium-v2
] q1 rlrln,w'fr\m'r\q'\.f"\”v‘rw#ﬂ,mw
v |
|
[

80- ||I |

70- | I;JI |
E\"UI ||'|I
| I

|

I

1”' ’|r| |IIHI J|' b
i m Il‘ | M.
— stoch’!s:‘ic w lWJ“ b

—— deterministic

normalized return

00 02 04 06 08 10
online samples leb

Figure 5: In red, we show the Online Decision Trans-
former fine-tuning of a model trained on offline data
over episodic iterations from (Zheng et al., 2022)

6 Results

We show our results by applying Decision Trans-
formers directly to the MuJoCo environment,
where we rely on its stochastic outputs for ex-
ploration. We plot the training trajectory of this
method in Figure 6, where the return evaluation
target is set to 3600.

Hopper Medium

—— DT Only
100

80

60

Return

40

20

0 100000 200000 300000 400000

Timestep

Figure 6: Evaluated return over the first 400,000
timesteps of online training for the Decision Trans-
former with no additional exploration policy.

As we hypothesized, the Decision Transformer
when applied directly to the online setting is unable
to garner higher returns over the course of training.
After 400,000 iterations, the method is only able
to achieve a return of approximately 100, whereas
typical state-of-the-art benchmarks achieve over a
return of 2500 with a similar number of iterations.
This low performance is attributed to the fact that
the DT is incapable reasoning about which actions
are favorable over others at a state transition level.
As a result, its method of exploration is almost
purely uniform, randomly attempting new actions
in hopes that the resulting trajectory has increased
return. As such, this result implies the requirement
of an exploration policy to assist exploration.

Next, we test the implementation of two dif-
ferent exploration policies: Vanilla Policy Gradi-
ent (VPG) and Twin-Delayed Deep Deterministic
Policy Gradients (TD3). In order to determine a
stronger candidate for the exploration policy, we
compare the training return trajectories of the two
methods. The results are shown in Figure 7.

Hopper Medium

2000 PG
1750 158
1500
1250
£
31000
()
o
750
500
250
/
ol =
0 50000 100000150000200000250000
Timestep
Figure 7: Evaluated return for the first 250,000

timesteps of our implementations of PG and TD3.

The results show that TD3 exhibits stronger sam-
ple efficiency and performance than those of the
policy gradient method, as expected, given the Ope-
nAl benchmarks for the two algorithms on this en-
vironment detailed in the previous section. This
is likely caused by the policy gradient’s high vari-
ance updates and the fact that it is constrained to
on-policy learning, as opposed to off-policy with
a replay buffer. It is also interesting to note the
standard deviations of each of the methods. Pol-
icy gradient’s training trajectory has a relatively
low standard deviation compared to that of TD3.
While this may be due to the fact that the policy
gradient method has lower return and, therefore,
less room to deviate, this can also be caused by
on-policy learning’s relative training stability when
compared to off-policy.

Based on the previous experiment, we choose
TD3 as our exploration policy method. In order to
provide a strong candidate, we run a few more ab-
lation tests on TD3 to determine what hyperparam-
eter configurations provide the best trajectory data.
We note that the largest source of training variance
is in how the critics, or Q-networks, are trained.
As a result, we experiment with various critic loss
functions: L2 loss, L1 loss, and SmoothL1 loss.
Furthermore, we test whether adding higher, scaled
policy noise (for exploration) and critic target noise
(for training stability) results in better performance.

Hopper Medium

20001 — TD3 L1
TD3 L2
17501 —— TD3 L2+Noise

—— TD3 SmoothL1
1500

1250

1000

Return

750

500

250

0 50000100000150000000@5000@00000
Timestep

Figure 8: Evaluated return for the first 500,000
timesteps for various versions of our TD3 implementa-
tion across our ablation study, in which we vary critic
loss functions and inclusion of policy noise.

It is interesting to note TD3’s vastly different
training return trajectories when varying its critic
loss function. Whereas L1 loss and SmoothL.1 loss
have relatively slow training curves, the use of
L2 loss provides higher sample efficiency. This
is likely due to the L2 loss function’s sensitivity
to outliers. Q-value updates with higher tempo-
ral difference values have stronger gradients with
L2 loss, while L1 loss treats all magnitudes with
the same gradient. Furthermore, the method with
higher policy and target noise is quicker to garner
higher returns than the method without. This can be
credited to additional policy exploration and more
stable critic updates. The performance difference
between the two methods (with and without noise)
is non-negligible, but we were uncertain about how
the added noise might affect Decision Transformer
training when plugged into the hybrid model. As
a result, we decide to test both implementations as
exploration policies.

Next, we show how the results when the Deci-
sion Transformer and TD3 with the chosen hyper-
parameter settings are combined together in the full
architecture. Note that all evaluation episodes of
the DT hybrid use action outputs from the Decision
Transformer itself, not the exploration policy. Fur-
thermore, the evaluation return targets for each of
the training trajectories including the DT was set to
1800. However, it is interesting that, despite being
given a fixed return target, the DT policy seems to
disregard it. This behavior can likely be attributed
to the small buffer size set for the DT policy. This
causes the DT to only look at high-return trajecto-

ries towards the latter end of training. As a result,
the DT learns to ignore the return target and simply
replicate recent behavior. Future work could center
around an investigation of increasing the size of the
buffer to properly allow the DT to output accurate
trajectories for given target returns.

Hopper Medium

2500

= DT with TD3

—— DT with TD3 (policy noise)

—— TD3 (policy noise) only
TD3 only

2000

1500

Return

1000

500

ol —
0 50000 100000150000200000250000
Timestep

Figure 9: Evaluated return for the first 250,000
timesteps of TD3 alongside our version, the
TD3/Decision Transformer hybrid. Both versions are
shown with and without added noise in the TD3 policy.

As shown in Figure 9, training when combin-
ing the DT and TD3 (without policy noise) shows
stronger performance than training with only TD3
(without policy noise). While TD3 exhibits train-
ing stability after 50,000 timesteps and drops in
average return, the hybrid model with the DT, on
average, monotonically increases and surpasses the
TD3 benchmark. While MuJoCo benchmarks typ-
ically train for above one million timesteps, time
and resource constraints prevented further training.
Regardless, it is very promising that the hybrid
model shows stronger performance.

Our results on methods with additional policy
and target noise in Figure 9 are inconclusive re-
garding the sample efficiency of the hybrid and
TD3 methods. Limited time caused our training
to stop early, and we are unable to see full results
comparing the two. It is notable to see that in both
cases, with and without policy noise, TD3 more
quickly achieves high returns when compared to
the hybrid. This is likely attributed to the fact that,
in the hybrid model, while the exploration TD3 pol-
icy may achieve high returns already, the Decision
Transformer still needs to train on that gathered
data. This delay between the exploration and DT
policy is reflected in the figure.

It is also interesting to note the relative volatility
of TD3’s training compared to the hybrid model
(with DT). We attribute this disparity by noting that
TD3’s training depends on deep value networks
and temporal difference updates. This type of train-
ing is known to be unstable, as not only do value
networks tend to have inherent estimation bias but
also policy updates depend on these unstable value
networks. In the case of the Decision Transformer,
the DT is simply fitting to past trajectories without
the need to solve a dynamic programming prob-
lem, whereas value networks need to. Thus, our
approach allows for better stability.

w Max
Offline 1960.17 4 495.82 3222.36
Fine-tuned 3101.81 + 317.21 3189.17
TD3 Only 2062.0 £ 746.12 3282.40
DT+TD3 2969.56 £ 6.11 3408.28

Table 1: Caption

In Table 1, we list the ending performance met-
rics of the various methods, where Offline pre-
training and Fine-tuned (online, following offline
pre-training) are replicated from (Zheng et al.,
2022), and DT+TD3 is our approach. We report
the ending performance metrics from (Zheng et al.,
2022), where for offline pre-training we average
across all five iterations, and for online fine-tuning,
we average over the last 10 out of 200 total itera-
tions of training. For the TD3 and the DT+TD3
hybrid architectures, we instead average over the
last 1000 iterations, as we perform a great number
many more iterations with these methods, and seek
to overall compare the evaluated returns near the
end of training for each method. It is paramount to
note that some of the methods were trained for a
different number of iterations, and as such, it is not
immediately conclusive which method is superior
to the other without further testing. Nevertheless,
in these results, our hybrid model outperforms of-
fline learning and the TD3 policy, and in addition,
nearly matches the online fine-tuned version’s per-
formance as introduced in (Zheng et al., 2022).
This is significant, because our method needs not
pre-train offline to achieve the same results as the
online fine-tuned version, and in addition success-
fully applies the benefits of the Decision Trans-
former in conjunction with TD3 to outperform TD3
on its own. Hence, these results demonstrate sig-
nificant promise for our method’s combination of

10

Decision Transformers with state-of-the-art RL al-
gorithms.

Average Std. Dev. TD3 TD3+ DT
No Policy Noise 341.26 296.36
With Policy Noise 281.40 207.15

Table 2: Average standard deviation of evaluation tra-
jectories throughout training when comparing various
methods. We notice that the standard deviation when
evaluating Decision Transformer policies is lower than
those of TD3 policies. This increased stability can be
credited to the fact that DT’s are not trained on deep
value functions, which can provide unstable updates,
but rather through sequence modeling.

We further elaborate on the training instability
of TD3 when compared to the hybrid model by
noting the standard deviations of evaluation returns
throughout training. In Table 2, it is shown that
the average standard deviation across all evaluation
episodes is lower when using the hybrid model than
when using only TD3. This further supports the
notion that the addition of the DT to TD3 allows
for more stable training.

7 Conclusion

This work introduces, to our knowledge, the first
algorithm for a fully online Decision Transformer
(DT). By using a reinforcement learning policy to
aid exploration, the DT is able to yield performance
that is competitive with current state-of-the-art al-
gorithms. It is noted that the DT and RL hybrid is
able to produce a policy with resulting performance
matching or even surpassing common RL baselines
in the tested environment. Furthermore, we find
that intermediate training and ending evaluation is
more stable in their return values, showing lower
standard deviations from their means when com-
pared to all other approaches. This is attributed to
the fact that the DT does not require a critic func-
tion to train, but rather directly optimizes to imitate
a set of trajectories.

Our primary goal with regard to future work is
to complete a wider range of trials with more iter-
ations in the Hopper environment. Due to limited
computing resources, we were unable to obtain a
full set of results, and as such, have yet to see our
implementation trained to its full potential. We
hope to perform a full range of trials for each ab-
lation of our Decision Transformer TD3 hybrid

architecture, as while we have shown that our im-
plementation meets the performance of previous
baselines without the need for offline pre-training,
we have yet to see whether our implementation will
exceed that baseline with further training. By com-
pleting a fuller range of trials, we will also have
sufficient data to resolve our current inconclusive-
ness on whether the policy noise version of our
hybrid architecture surpasses the performance of
TD3 with policy noise. Another desired alteration
to our architecture which we omitted for the sake
of time is the increase of the buffer size of the De-
cision Transformer policy, which would allow it
to more effectively remember target return values
during extended training. In addition, we wish to
extend our results to include other MuJoCo bench-
marks, such as Cheetah, Ant, and Walker, which
would provide further insight into the comparative
performance between the architectures studied in
this paper.

One benefit of our implementation is its modu-
larity. Our implementation is based on that of the
original Decision Transformer, which uses Trans-
former architecture from BERT and GPT-2. We
posit that substituting this architecture with more
recent or more specialized Transformer architec-
tures may increase or alter the performance of our
architecture on certain tasks. Furthermore, we may
also easily replace the TD3 policy in our hybrid
architecture with another exploration policy, which,
depending on the effectiveness of that policy on a
certain benchmark, may increase the performance
of our hybrid architecture. For these reasons, we
believe that the high modularity of our architecture
will allow it to combine advances in performance in
Transformers as well as new exploration policies.

8 Acknowledgements

Thank you to the University of Michigan for pro-
viding us with the computing resources to run these
experiments. We would also like to thank Joyce
Chai and the teaching staff of EECS 595 for facili-
tating the space to explore this research topic.

References

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee,
Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. Decision transformer:
Reinforcement learning via sequence modeling. Ad-
vances in neural information processing systems,

34:15084-15097.

André Correia and Luis A Alexandre. 2022. Hi-
erarchical decision transformer. arXiv preprint
arXiv:2209.10447.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker,
and Sergey Levine. 2020. D4rl: Datasets for deep
data-driven reinforcement learning.

Scott Fujimoto, Herke Hoof, and David Meger. 2018.
Addressing function approximation error in actor-
critic methods. In International conference on ma-
chine learning, pages 1587-1596. PMLR.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. 2018. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with
a stochastic actor. In International conference on
machine learning, pages 1861-1870. PMLR.

Muhammad Junaid Khan, Syed Hammad Ahmed, and
Gita Sukthankar. 2022. Transformer-based value
function decomposition for cooperative multi-agent
reinforcement learning in starcraft. In Proceedings
of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 18, pages
113-119.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Sil-
ver, and Daan Wierstra. 2015. Continuous control
with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.

Richard S Sutton, David McAllester, Satinder Singh,
and Yishay Mansour. 1999. Policy gradient methods
for reinforcement learning with function approxima-
tion. Advances in neural information processing
systems, 12.

Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012.
Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 5026-5033.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Qinging Zheng, Amy Zhang, and Aditya Grover.
2022. Online decision transformer. arXiv preprint
arXiv:2202.05607.

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.48550/ARXIV.2004.07219
https://doi.org/10.48550/ARXIV.2004.07219
https://doi.org/10.48550/ARXIV.2004.07219
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762

	Introduction
	Related Work
	Online vs Offline Learning
	Approach
	DT-Based Exploration
	RL-Based Exploration
	Choice of Reinforcement Learning Algorithm
	Implementation

	Evaluation
	Results
	Conclusion
	Acknowledgements

