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Abstract

Devising deep reinforcement learning (RL) al-001
gorithms with better sample efficiency, stability,002
and applicability is a cornerstone research prob-003
lem in machine learning. While many model-004
free approaches have proposed learning in pol-005
icy space or value space directly, others have006
applied the Transformer neural network archi-007
tecture to model RL as a sequence modeling008
problem. Previous approaches have advocated009
for the use of Transformers in offline settings,010
where a dataset is provided to the Transformer011
to fit. However, the application of the method012
directly to online settings, where data has to be013
gathered through the policy’s own exploration,014
has been relatively unexplored. This approach015
poses the problem of exploration: how can an016
architecture that does not directly optimize re-017
wards derive a strong policy? As such, in this018
work, we adapt the Decision Transformer (DT)019
architecture to fully online settings, where ex-020
ploration is aided by an RL policy that is trained021
in parallel. We show that the combination of022
the DT and exploratory RL policy yields perfor-023
mance that matches and sometimes surpasses024
state-of-the-art RL algorithms. Also, we show025
that the standard deviation of returns in inter-026
mediate evaluation episodes is lower than that027
of typical RL policy training. We note several028
key attributes of the DT that allow it to achieve029
such performance.030

1 Introduction031

Recent work in the field of Natural Language032

Processing has centered around the Transformer033

(Vaswani et al., 2017), an attention-based archi-034

tecture that has shown flexibility and utility in se-035

quence modeling problems common within the036

field. This success has resulted in a flurry of fur-037

ther work on the Transformer, with new work pro-038

viding many new architectures and hardware solu-039

tions designed to exploit the power of the Trans-040

former. Historically, Transformers have shown few041

useful applications within the field of Reinforce-042

ment Learning, which contains problems less read- 043

ily applicable to the sequence modeling problems 044

in other fields which easily beget the use of the 045

Transformer. This work proposes a method that 046

incorporates the Transformer into online settings. 047

In this work, we adapt the existing Decision 048

Transformer architecture, a recent development 049

which, for the first time, successfully applies ad- 050

vancements in Transformer architectures to offline 051

Reinforcement Learning (RL) problems. We aim to 052

build upon the work behind Decision Transformer 053

to bring the architecture’s strengths to the problem 054

of online Reinforcement Learning, which has an 055

increased variety of real-world use cases. 056

2 Related Work 057

Recent work has introduced the Decision Trans- 058

former architecture (Chen et al.), which models of- 059

fline Reinforcement Learning as a sequence model- 060

ing problem, thereby breaking from previous work 061

in RL and utilizing a Transformer to guide the 062

choice of optimal action in pursuit of the desired 063

return. This strategy allows the architecture to draw 064

upon the wealth of Transformer-related advances 065

in the field of Natural Language Processing, such 066

as the BERT architecture (Devlin et al., 2018). The 067

Decision Transformer is made possible by the flex- 068

ibility of the Transformer architecture and has seen 069

great success in the problem of offline Reinforce- 070

ment Learning due to the ability of the transformer 071

to recognize relationships between states and re- 072

turns. 073

The drawback of the Decision Transformer is 074

that its implementation is constrained to offline 075

learning only, which restricts its real-world use 076

cases. In particular, by reducing training to a se- 077

quence modeling problem, the agent only has the 078

ability to make decisions based on a pre-existing 079

dataset. The agent can therefore effectively exploit 080

its initial knowledge but has no means to explore 081

its environment to update this initial knowledge 082
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with ongoing observations. In our work, we aim to083

build upon the Decision Transformer by expanding084

it to an online setting by pairing the offline training085

of the Decision transformer with an approach to086

online exploration.087

(Zheng et al., 2022) then built on this approach088

to allow for online fine-tuning of a Decision Trans-089

former, and was the first to apply this architecture090

to the online setting in some capacity. However, de-091

spite this capability to fine-tune a Decision Trans-092

former in an online setting, this implementation093

still requires offline pre-training of the Decision094

Transformer and thus some pre-existing informa-095

tion about the environment. This implementation096

trains on the MuJoCo benchmark (Todorov et al.,097

2012), a series of three-dimensional physics simu-098

lations which require online learning. For the of-099

fline pre-training of the model, this implementation100

sources D4RL (Fu et al., 2020) for pre-baked obser-101

vations about the MuJoCo environments in ques-102

tion. Other approaches have utilized transformers103

for value decomposition (Khan et al., 2022) and hi-104

erarchical learning (Correia and Alexandre, 2022).105

However, to our knowledge, our implementation106

is the first full application of the Decision Trans-107

former to the online setting without the need for108

offline pre-training.109

Other work has directly applied reinforce-110

ment learning algorithms in single-agent settings.111

Vanilla policy gradient (Sutton et al., 1999) uses112

Monte Carlo Q-updates to optimize a policy113

through on-policy updates. More recent approaches114

propose actor-critic frameworks where neural net-115

works are used to estimate both state-action values116

and policies. Deep Deterministic Policy Gradients117

(Lillicrap et al., 2015) is an example of a determin-118

istic actor-critic method that uses Gaussian noise119

for exploration. Its closely related refinement to the120

algorithm, Twin-Delayed Deep Deterministic Pol-121

icy Gradients (TD3), particularly addresses value122

function overestimation by minimizing between123

two value networks (Fujimoto et al., 2018). Other124

methods such as Soft Actor-Critic (Haarnoja et al.,125

2018) make use of entropy regularization to encour-126

age exploration.127

3 Online vs Offline Learning128

Neither offline nor online learning is inherently129

superior to the other – these two settings for rein-130

forcement learning simply have different starting131

assumptions. Offline learning assumes access to132

a pre-existing dataset, but cannot interact with the 133

environment during training. On the other hand, 134

online learning assumes the lack of a pre-existing 135

dataset, instead opting to build one iteratively via 136

live interaction with the environment. The goal of 137

the fully online setting is to “solve” a game through 138

trial and error in the environment itself. This ca- 139

pability proves advantageous in a broad array of 140

real-world applications because it allows agents to 141

solve games from scratch, figuring out the optimal 142

actions through their own exploration without the 143

need for prior knowledge about the environment. 144

In regards to limitations, the current Decision 145

Transformer architecture, one that models the en- 146

vironment as a sequence modeling problem, does 147

not reason about rewards in the environment. As 148

a result, the Decision Transformer architecture is 149

ineffective in deciding how to explore an environ- 150

ment intelligently. Instead, at a high level, it simply 151

imitates state transition data to achieve a given tar- 152

get return. As long as it has trained on data that has 153

achieved that return, it is effective in replicating 154

that return. In a sequence modeling framework, the 155

Decision Transformer is well-equipped to find pat- 156

terns in data but does not optimize a function that 157

finds high rewards. Our approach aims to provide 158

this capability. 159

4 Approach 160

In this section, we outline the proposed approach 161

to adapt Decision Transformers (DT) to online set- 162

tings. Given the lack of any assumption about a 163

pre-existing dataset, such an approach must find a 164

way to gather training data for the model to fit. We 165

propose various methods in which this dataset can 166

be incrementally built over time while concurrently 167

improving the DT policy. 168

4.1 DT-Based Exploration 169

First, we will test a direct application of the DT 170

algorithm to the online setting. We will make the 171

decision transformer stochastic in its action outputs, 172

sampling from a multivariate Gaussian with a diag- 173

onal covariance matrix, as shown in (Zheng et al., 174

2022). The decision transformer policy will be used 175

to explore the environment and gather transition 176

data, using a sampled return target as input from a 177

univariate Gaussian. After every N episodes, we 178

will fit the DT to the trajectory data and fit the re- 179

turn distribution to the dataset. This cycle of data 180

collection and fitting is shown in Figure 1, and the 181
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fully enumerated algorithm is shown in Algorithm182

1.183

Figure 1: Full architecture of the fully online decision
transformer implementation. The decision transformer
will stochastically choose actions to explore the envi-
ronment and store trajectories in a replay buffer. The
DT will fit to sampled batches from the replay buffer
every N episodes. Target returns are determined by fit-
ting a univariate Gaussian to a subset of returns from
past trajectories, and sampling from the distribution to
determine future episode target returns.

The intention in keeping our transformer stochas-184

tic is to provide a natural way for the Deci-185

sion Transformer to explore the environment and,186

through random chance, achieve higher return tra-187

jectories that it has not previously seen. In effect,188

Algorithm 1: Fully Online Decision Trans-
former Naive
Input: Decision Transformer πθ, Number

of Iterations T , Proportion of
Trajectories for Return Target β,
Train Every N , Train Iterations
Ntrain, Batch Size B, Learning Rate
λ, Replay Buffer R, Univariate
Gaussian Sampler ρ

1 for each iteration i of T do
2 Sample Rtar ∼ ρ. Return 0 if ρ has not

been fit to data yet
3 Use π to gather trajectory information τ
4 Store τ in R
5 if i%N == 0 then
6 for Ntrain steps do
7 Sample batch B ∼ R
8 Update Decision Transformer

parameters θ with B according
to Algorithm 2

9 Fit ρ to proportion β of most recent
trajectory returns in R

Algorithm 2: Decision Transformer Up-
date Function
Input: Decision Transformer πθ, Learning

Rate λ, Batch B of (Returns-to-go,
States, Actions, Time step)

1 Let {xi}ni=1 be the sequence of
{Ri, si, ai, ti}ni=1

2 Let key ki, query qi, and value vi be mapped
via linear transformations from xi

3 Let πθ({xi}ni=1) =∑n
j=1 softmax({⟨qi, kj′⟩}nj′=1)j · vj

4 apreds = πθ({xi}ni=1)
5 L = mean((apreds − a)2)
6 θ = θ −∇θL
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the replay buffer will provide higher return trajecto-189

ries for the transformer to imitate in the future. The190

addition of a higher return trajectory also shifts the191

distribution of past returns to a higher mean. This192

implies that the algorithm will more likely attain193

higher-return targets to explore later on.194

4.2 RL-Based Exploration195

It is important to note that the DT policy itself may196

not be effective in exploration. Because training oc-197

curs at the trajectory level, the DT may have trouble198

exploiting information in state transitions to max-199

imize rewards. As such, the DT does not reason200

about reward optimization. Instead, it looks at past201

trajectory information and, at a high level, imitates202

behavior that yields certain return targets. Further-203

more, in the offline case, the DT assumes trajecto-204

ries in the dataset are favorable or have some sem-205

blance of optimality. However, this is not the case206

in online learning, where trajectories are far more207

likely to be suboptimal, or even useless. Because208

the DT’s performance is only as strong as that of209

its dataset, we propose a method to aid exploration.210

The exploration method should be able to reason211

directly about rewards and optimize actions to yield212

high returns. A natural selection for this explo-213

ration method is to train a reinforcement learning214

policy in parallel with the DT. The intuition behind215

this method is to gather useful, high-return trajec-216

tory information using the reinforcement learning217

algorithm to jump-start the training of the DT. Then,218

the DT will be more informed in its decisions when219

stochastically exploring the environment.220

The choice of reinforcement learning algorithm221

is discussed in the following section. To weave in222

the exploratory reinforcement learning algorithm,223

we stochastically choose between using the explo-224

ration (RL) policy and the DT policy to gather data225

every episode. We opt for the algorithm to choose226

between the policies in every episode as opposed227

to in every action in order to ensure that each trajec-228

tory is generated by a single policy. This allows for229

on-policy training if the chosen exploration policy230

requires it, assuming only trajectories generated by231

the exploration policy are used to train the explo-232

ration policy. Also, this provides consistency. It is233

noted in previous papers that the DT is able to draw234

its strength in offline training because its use of235

attention allows it to differentiate which policy gen-236

erated various trajectories in the dataset. Keeping237

trajectories generated by a single policy is meant238

to take advantage of this. 239

We denote the probability in which the explo- 240

ration policy is chosen over the DT policy as α. 241

This value is decreased linearly over training itera- 242

tions (per episode). By doing this, the responsibil- 243

ity of exploration and policy optimization is shifted 244

over to the DT policy. 245

4.3 Choice of Reinforcement Learning 246

Algorithm 247

We apply various algorithms to help gather better 248

trajectories for the DT to train on. First, for its sim- 249

plicity, we first use an approach akin to the Vanilla 250

Policy Gradient (VPG) algorithm as the exploration 251

policy. This approach is outlined in Algorithm 3. 252

It is known that Monte Carlo sampled Q-values 253

for training policy gradients typically have high 254

variance and do not typically perform as well in 255

complex environments compared to more state-of- 256

the-art approaches. However, the implementation 257

serves as a good baseline to observe whether the 258

DT can reason about the environment with rela- 259

tively suboptimal trajectories. 260

We also implement a more state-of-the-art re- 261

inforcement learning algorithm as the exploration 262

policy: Twin-Delayed Deep Deterministic Policy 263

Gradients (TD3). TD3 is an actor-critic method 264

that outputs deterministic actions, where Gaussian 265

noise is added to allow for additional exploration. 266

There are two strengths to TD3: a delayed pol- 267

icy update and minimization between two target 268

Q-networks when making gradient updates. The 269

former allows for additional training stability so 270

that value networks are sufficiently trained before 271

being used to update the policy. The latter helps 272

reduce Q value overestimation, an issue commonly 273

present in deep Q-networks. This algorithm was 274

chosen for its powerful learning ability and the 275

omission of other optimizations such as entropy 276

loss, allowing for easier, quicker finetuning. The 277

algorithm for TD3 is outlined in Algorithm 4 278

Next, we outline the full online decision trans- 279

former architecture and algorithm. These are 280

shown in Figure 2 and Algorithm 5. 281
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Algorithm 3: Policy Gradient Update Func-
tion
Input: RL Policy π′θ′ , Batch Size B,

Learning Rate λ, Discount Factor γ,
Replay R

1 for each episode do
2 for each iteration in episode do
3 Observe state s and select action

a ∼ π′θ′(s)
4 Execute a in the environment
5 Observe next state s′, reward r, and

done signal d to indicate if s′ is
terminal

6 Store (s, a, r, s′, d) in R
7 If s′ terminal, reset the environment

8 if |R| ≥ B then
9 Gather a batch size B of

{xi}i=1
n = (si, ai, ri, s

′
idi)

n
i=1

10 Calculate baseline
b = mean(ri

n
i=1)

11 Calculate scale s = std((ri
n
i=1)

12 Calculate returns to go
Ri =

∑n
j=i (rj − b)/s

13 L = 1
n

∑n
i=1 log(π

′
θ′(ai|si)) ∗Ri

14 θ′ = θ′ −∇θ′L
15 Clear Buffer R

Algorithm 4: Twin-Delayed Deep Deter-
ministic Policy Gradients Update Function
Input: RL Policy π′θ′ , Q functions Qψ1 ,

Qψ2 , Replay R
1 Set target parameters equal to main

parameters θtarget ← θ, ψtarget1 ← ψ1 ,
ψtarget2 ← ψ2

2 for each episode do
3 for each iteration in episode do
4 Observe state s and select action

a = clip(π′θ′(s) + ϵ, alow, ahigh)
where ϵ ∼ N

5 Execute a in the environment
6 Observe next state s′, reward r, and

done signal d to indicate if s′ is
terminal

7 Store (s, a, r, s′, d) in R
8 If s′ terminal, reset the environment

9 if time to update then
10 for j in range number of updates do
11 Sample batch size

B = (s, a, r, s′, d) from replay
R

12 Compute target actions
a′(s′) = clip(π′θ′(s

′) +
clip(ϵ,−c, c), alow, ahigh)
where ϵ ∼ N (0, σ)

13 Compute targets
y(r, s′, d) = r + γ(1−
d)mini=1,2Qψtargeti

(s′, a′(s′))

14 Update Q functions for i=1,2
∇ψi

1
|B|

∑
(s,a,r,s′,d)∈R(Qψi

−
y(r, s′, d))2

15 if j mod policy delay == 0 then
16 Update policy

∇θ 1
|B|

∑
s∈RQψ1(s,π′

θ′ (s))

17 Update target networks for i
= 1,2 ψtargeti ←
ρψtargeti + (1− ρ)ψi

18 θtarget ← ρθtarget+(1−ρ)θ
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Figure 2: Full training architecture when the reinforce-
ment learning exploration policy is included. The two
policies are trained in parallel and independently, taking
batch updates at different frequencies. Trajectory infor-
mation is stored in separate buffers and the policy choice
is decided every episode. Actions from both policies are
filtered through a combined module, which determines
which action gets executed in the environment.

4.4 Implementation282

We adopt the Online Decision Transformer code283

from Daniel Lawson. We also adapt code from284

Algorithm 5: Fully Online Decision Trans-
former
Input: Decision Transformer πdt, RL

Exploration Policy πrl, Number of
Iterations N , Replay Buffer Rdt,
Replay Buffer for RL Policy Rrl,
Univariate Gaussian Sampler ρ,
Initial Alpha αinit, Final Alpha
αfinal, All other Hyperparameters
are specified in the DT and RL
policy specific algorithms.

1 α = αinit
2 for each iteration i of N do
3 Sample Rtar ∼ ρ. Return 0 if ρ has not

been fit to data yet
4 Choose policy

π ∼ (πdt = (1− α), πrl = α)
5 Use π to gather trajectory information τ
6 Store τ in Rdt
7 if (Used πrl and πrl is on-policy) or (πrl

is off-policy) then
8 Store τ in Rrl
9 if i%T == 0 then

10 for Ntrain steps do
11 Sample batch B ∼ R
12 Update Decision Transformer

parameters π according to
Algorithm 2

13 if i%Trl == 0 then
14 for Ntrainrl steps do
15 Sample batch Brl ∼ R
16 Update Exploration policy

paramters πrl according to
Algorithm 3 or 4

17 Fit ρ to proportion β of past trajectory
returns in R

18 Update α linearly towards αfinal
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Vanilla Policy Gradient and TD3 from OpenAI’s285

SpinningUp repository. To run experiments, we286

use the University of Michigan’s Great Lakes Com-287

puting Clusters.288

5 Evaluation289

We test our implementation on the MuJoCo testbed,290

a collection of three-dimensional physics simula-291

tions designed for reinforcement learning. MuJoCo292

contains multiple tasks, each of which provides a293

challenging online task focused on spatial reason-294

ing. For the purposes of this paper, we focus our295

testing on the Hopper benchmark. A screenshot of296

the replay of the Hopper task is shown in Figure297

3, and the goal of the Hopper task is described as298

follows, from the Open AI website: “The hopper299

is a two-dimensional one-legged figure that consist300

of four main body parts - the torso at the top, the301

thigh in the middle, the leg in the bottom, and a302

single foot on which the entire body rests. The goal303

is to make hops that move in the forward (right)304

direction by applying torques on the three hinges305

connecting the four body parts.” The agent receives306

more rewards the further right it is able to move the307

hopper, and this reward is used to train the policy.308

Figure 3: A screencap of the MuJoCo Hopper envi-
ronment, in which the agent assumes control of the
"hopper" and is tasked with navigating it to the right.

We chose MuJoCo as our testbed for several rea-309

sons. It is a widely-used benchmark for online310

RL and is the testbed used in the Online Decision311

Transformer paper, allowing us to directly replicate312

and compare the results of that paper. MuJoCo 313

provides a diverse set of environments that ran- 314

domize initial conditions and give agents fine-tune 315

control, so to succeed on this benchmark, our ar- 316

chitecture must be capable of effectively reasoning 317

about the spatial characteristics of the environment. 318

Figure 4 shows benchmarks by OpenAI for various 319

RL policies on the MuJoCo Hopper benchmark. 320

The Y-axis, performance, represents the ongoing 321

rewards achieved by the agent while playing Hop- 322

per. Figure 5 is an excerpt from the Online Deci- 323

sion Transformer paper and represents the rewards 324

achieved by that architecture during fine-tuning, in 325

proportion to the reward expected by the decision 326

transformer. Our goal is to replicate this perfor- 327

mance with our architecture without the need for 328

pre-training. 329

Figure 4: OpenAI SpinningUp benchmarks for various
reinforcement learning algorithm implementations on
the Hopper Environment.

Figure 5: In red, we show the Online Decision Trans-
former fine-tuning of a model trained on offline data
over episodic iterations from (Zheng et al., 2022)
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6 Results330

We show our results by applying Decision Trans-331

formers directly to the MuJoCo environment,332

where we rely on its stochastic outputs for ex-333

ploration. We plot the training trajectory of this334

method in Figure 6, where the return evaluation335

target is set to 3600.336

Figure 6: Evaluated return over the first 400,000
timesteps of online training for the Decision Trans-
former with no additional exploration policy.

As we hypothesized, the Decision Transformer337

when applied directly to the online setting is unable338

to garner higher returns over the course of training.339

After 400,000 iterations, the method is only able340

to achieve a return of approximately 100, whereas341

typical state-of-the-art benchmarks achieve over a342

return of 2500 with a similar number of iterations.343

This low performance is attributed to the fact that344

the DT is incapable reasoning about which actions345

are favorable over others at a state transition level.346

As a result, its method of exploration is almost347

purely uniform, randomly attempting new actions348

in hopes that the resulting trajectory has increased349

return. As such, this result implies the requirement350

of an exploration policy to assist exploration.351

Next, we test the implementation of two dif-352

ferent exploration policies: Vanilla Policy Gradi-353

ent (VPG) and Twin-Delayed Deep Deterministic354

Policy Gradients (TD3). In order to determine a355

stronger candidate for the exploration policy, we356

compare the training return trajectories of the two357

methods. The results are shown in Figure 7.358

Figure 7: Evaluated return for the first 250,000
timesteps of our implementations of PG and TD3.

The results show that TD3 exhibits stronger sam- 359

ple efficiency and performance than those of the 360

policy gradient method, as expected, given the Ope- 361

nAI benchmarks for the two algorithms on this en- 362

vironment detailed in the previous section. This 363

is likely caused by the policy gradient’s high vari- 364

ance updates and the fact that it is constrained to 365

on-policy learning, as opposed to off-policy with 366

a replay buffer. It is also interesting to note the 367

standard deviations of each of the methods. Pol- 368

icy gradient’s training trajectory has a relatively 369

low standard deviation compared to that of TD3. 370

While this may be due to the fact that the policy 371

gradient method has lower return and, therefore, 372

less room to deviate, this can also be caused by 373

on-policy learning’s relative training stability when 374

compared to off-policy. 375

Based on the previous experiment, we choose 376

TD3 as our exploration policy method. In order to 377

provide a strong candidate, we run a few more ab- 378

lation tests on TD3 to determine what hyperparam- 379

eter configurations provide the best trajectory data. 380

We note that the largest source of training variance 381

is in how the critics, or Q-networks, are trained. 382

As a result, we experiment with various critic loss 383

functions: L2 loss, L1 loss, and SmoothL1 loss. 384

Furthermore, we test whether adding higher, scaled 385

policy noise (for exploration) and critic target noise 386

(for training stability) results in better performance. 387
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Figure 8: Evaluated return for the first 500,000
timesteps for various versions of our TD3 implementa-
tion across our ablation study, in which we vary critic
loss functions and inclusion of policy noise.

It is interesting to note TD3’s vastly different388

training return trajectories when varying its critic389

loss function. Whereas L1 loss and SmoothL1 loss390

have relatively slow training curves, the use of391

L2 loss provides higher sample efficiency. This392

is likely due to the L2 loss function’s sensitivity393

to outliers. Q-value updates with higher tempo-394

ral difference values have stronger gradients with395

L2 loss, while L1 loss treats all magnitudes with396

the same gradient. Furthermore, the method with397

higher policy and target noise is quicker to garner398

higher returns than the method without. This can be399

credited to additional policy exploration and more400

stable critic updates. The performance difference401

between the two methods (with and without noise)402

is non-negligible, but we were uncertain about how403

the added noise might affect Decision Transformer404

training when plugged into the hybrid model. As405

a result, we decide to test both implementations as406

exploration policies.407

Next, we show how the results when the Deci-408

sion Transformer and TD3 with the chosen hyper-409

parameter settings are combined together in the full410

architecture. Note that all evaluation episodes of411

the DT hybrid use action outputs from the Decision412

Transformer itself, not the exploration policy. Fur-413

thermore, the evaluation return targets for each of414

the training trajectories including the DT was set to415

1800. However, it is interesting that, despite being416

given a fixed return target, the DT policy seems to417

disregard it. This behavior can likely be attributed418

to the small buffer size set for the DT policy. This419

causes the DT to only look at high-return trajecto-420

ries towards the latter end of training. As a result, 421

the DT learns to ignore the return target and simply 422

replicate recent behavior. Future work could center 423

around an investigation of increasing the size of the 424

buffer to properly allow the DT to output accurate 425

trajectories for given target returns. 426

Figure 9: Evaluated return for the first 250,000
timesteps of TD3 alongside our version, the
TD3/Decision Transformer hybrid. Both versions are
shown with and without added noise in the TD3 policy.

As shown in Figure 9, training when combin- 427

ing the DT and TD3 (without policy noise) shows 428

stronger performance than training with only TD3 429

(without policy noise). While TD3 exhibits train- 430

ing stability after 50,000 timesteps and drops in 431

average return, the hybrid model with the DT, on 432

average, monotonically increases and surpasses the 433

TD3 benchmark. While MuJoCo benchmarks typ- 434

ically train for above one million timesteps, time 435

and resource constraints prevented further training. 436

Regardless, it is very promising that the hybrid 437

model shows stronger performance. 438

Our results on methods with additional policy 439

and target noise in Figure 9 are inconclusive re- 440

garding the sample efficiency of the hybrid and 441

TD3 methods. Limited time caused our training 442

to stop early, and we are unable to see full results 443

comparing the two. It is notable to see that in both 444

cases, with and without policy noise, TD3 more 445

quickly achieves high returns when compared to 446

the hybrid. This is likely attributed to the fact that, 447

in the hybrid model, while the exploration TD3 pol- 448

icy may achieve high returns already, the Decision 449

Transformer still needs to train on that gathered 450

data. This delay between the exploration and DT 451

policy is reflected in the figure. 452
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It is also interesting to note the relative volatility453

of TD3’s training compared to the hybrid model454

(with DT). We attribute this disparity by noting that455

TD3’s training depends on deep value networks456

and temporal difference updates. This type of train-457

ing is known to be unstable, as not only do value458

networks tend to have inherent estimation bias but459

also policy updates depend on these unstable value460

networks. In the case of the Decision Transformer,461

the DT is simply fitting to past trajectories without462

the need to solve a dynamic programming prob-463

lem, whereas value networks need to. Thus, our464

approach allows for better stability.465

µ Max

Offline 1960.17± 495.82 3222.36
Fine-tuned 3101.81 ± 317.21 3189.17
TD3 Only 2062.0± 746.12 3282.40
DT+TD3 2969.56 ± 6.11 3408.28

Table 1: Caption

In Table 1, we list the ending performance met-466

rics of the various methods, where Offline pre-467

training and Fine-tuned (online, following offline468

pre-training) are replicated from (Zheng et al.,469

2022), and DT+TD3 is our approach. We report470

the ending performance metrics from (Zheng et al.,471

2022), where for offline pre-training we average472

across all five iterations, and for online fine-tuning,473

we average over the last 10 out of 200 total itera-474

tions of training. For the TD3 and the DT+TD3475

hybrid architectures, we instead average over the476

last 1000 iterations, as we perform a great number477

many more iterations with these methods, and seek478

to overall compare the evaluated returns near the479

end of training for each method. It is paramount to480

note that some of the methods were trained for a481

different number of iterations, and as such, it is not482

immediately conclusive which method is superior483

to the other without further testing. Nevertheless,484

in these results, our hybrid model outperforms of-485

fline learning and the TD3 policy, and in addition,486

nearly matches the online fine-tuned version’s per-487

formance as introduced in (Zheng et al., 2022).488

This is significant, because our method needs not489

pre-train offline to achieve the same results as the490

online fine-tuned version, and in addition success-491

fully applies the benefits of the Decision Trans-492

former in conjunction with TD3 to outperform TD3493

on its own. Hence, these results demonstrate sig-494

nificant promise for our method’s combination of495

Decision Transformers with state-of-the-art RL al- 496

gorithms. 497

Average Std. Dev. TD3 TD3 + DT

No Policy Noise 341.26 296.36
With Policy Noise 281.40 207.15

Table 2: Average standard deviation of evaluation tra-
jectories throughout training when comparing various
methods. We notice that the standard deviation when
evaluating Decision Transformer policies is lower than
those of TD3 policies. This increased stability can be
credited to the fact that DT’s are not trained on deep
value functions, which can provide unstable updates,
but rather through sequence modeling.

We further elaborate on the training instability 498

of TD3 when compared to the hybrid model by 499

noting the standard deviations of evaluation returns 500

throughout training. In Table 2, it is shown that 501

the average standard deviation across all evaluation 502

episodes is lower when using the hybrid model than 503

when using only TD3. This further supports the 504

notion that the addition of the DT to TD3 allows 505

for more stable training. 506

7 Conclusion 507

This work introduces, to our knowledge, the first 508

algorithm for a fully online Decision Transformer 509

(DT). By using a reinforcement learning policy to 510

aid exploration, the DT is able to yield performance 511

that is competitive with current state-of-the-art al- 512

gorithms. It is noted that the DT and RL hybrid is 513

able to produce a policy with resulting performance 514

matching or even surpassing common RL baselines 515

in the tested environment. Furthermore, we find 516

that intermediate training and ending evaluation is 517

more stable in their return values, showing lower 518

standard deviations from their means when com- 519

pared to all other approaches. This is attributed to 520

the fact that the DT does not require a critic func- 521

tion to train, but rather directly optimizes to imitate 522

a set of trajectories. 523

Our primary goal with regard to future work is 524

to complete a wider range of trials with more iter- 525

ations in the Hopper environment. Due to limited 526

computing resources, we were unable to obtain a 527

full set of results, and as such, have yet to see our 528

implementation trained to its full potential. We 529

hope to perform a full range of trials for each ab- 530

lation of our Decision Transformer TD3 hybrid 531
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architecture, as while we have shown that our im-532

plementation meets the performance of previous533

baselines without the need for offline pre-training,534

we have yet to see whether our implementation will535

exceed that baseline with further training. By com-536

pleting a fuller range of trials, we will also have537

sufficient data to resolve our current inconclusive-538

ness on whether the policy noise version of our539

hybrid architecture surpasses the performance of540

TD3 with policy noise. Another desired alteration541

to our architecture which we omitted for the sake542

of time is the increase of the buffer size of the De-543

cision Transformer policy, which would allow it544

to more effectively remember target return values545

during extended training. In addition, we wish to546

extend our results to include other MuJoCo bench-547

marks, such as Cheetah, Ant, and Walker, which548

would provide further insight into the comparative549

performance between the architectures studied in550

this paper.551

One benefit of our implementation is its modu-552

larity. Our implementation is based on that of the553

original Decision Transformer, which uses Trans-554

former architecture from BERT and GPT-2. We555

posit that substituting this architecture with more556

recent or more specialized Transformer architec-557

tures may increase or alter the performance of our558

architecture on certain tasks. Furthermore, we may559

also easily replace the TD3 policy in our hybrid560

architecture with another exploration policy, which,561

depending on the effectiveness of that policy on a562

certain benchmark, may increase the performance563

of our hybrid architecture. For these reasons, we564

believe that the high modularity of our architecture565

will allow it to combine advances in performance in566

Transformers as well as new exploration policies.567
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