EECS 595 Final Project Report

Ben VanDerPloeg

Abstract

As noted by the authors of Storks et al. (2021),
the ubiquitous language model has dominated
the field of NLP for the past few years, leverag-
ing huge corpora to gain rich contextual under-
standings of natural language at the expense of
interpretability. Their new physical common-
sense dataset, Tiered Reasoning for Intuitive
Physics (TRIP), presents tasks which require
a model to not only give the correct answer,
but to explain its reasoning through identify-
ing relevant portions of text and physical state
changes. In this spirit, we herein present a
hyper-interpretable system ! for the TRIP tiered
reasoning tasks which explicitly tracks distri-
butions of object states throughout a story to
reach an explainable conclusion.

1 Introduction

Tiered Reasoning for Intuitive Physics (TRIP) is
a new dataset published by Storks et al. (2021)
which explores physical commonsense reasoning
with an emphasis on explainability and the validity
of models’ underlying reasoning. Consisting of
pairs of brief stories — one of which is plausible,
and the other not — a model’s primary task is to
decide which story is plausible. However, the addi-
tional tasks proposed by the authors also challenge
the model’s ability to explain which sentences in
the story conflict, as well as what physical state
changes contributed to the conflict. Hence, the
reasoning tasks are tiered, each requiring a deeper
understanding of the story than the last.

In this report, we detail our implementation of a
lightweight system for the TRIP tasks which at-
tempts to take interpretability a step further by
leveraging explicit distributions of object states
over time to make inferences about plausibility.
Each stage in the pipeline is almost entirely “trans-
parent”, and the sequence of intermediate infer-
ences made on a story are readily understandable.

"https://github.com/1lildutchie99/
EECS595FinalProject

We begin by estimating a distribution of the phys-
ical state changes (preconditions and effects) un-
dergone by each object in each sentence, where
states consist of a handful of binary attributes such
as “conscious” and “wet". We then iterate through
the story, tracking the state of the objects and not-
ing when a precondition is likely to have not been
satisfied. From these conflicts, we can look back
at previous modifications to object attributes to de-
termine the source of the conflict as well as the
physical state changes responsible, thereby solving
the tiered tasks.

2 Related Work

As the authors noted, the tasks proposed in this
paper are largely novel (as is the dataset) so there is
no prior work on this exact problem. Some bench-
marks and approaches for related physical common
sense reasoning tasks are given in the original pa-
per. As for our approach, there is much work in
past decades on applying logic programming to
NLP tasks, perhaps the most relevant to this ap-
proach being Lima et al. (2019). Similar to our
approach for state change prediction, they model
semantic relationships as dependency graph paths
and infer transfer rules (or in our case distributions)
from data. This work, however, is on the Relation
Extraction (RE) task rather than sequential physi-
cal reasoning, so the pipeline ends with outputting
predicate tuples, rather than reasoning about physi-
cal state changes as we would like to do here.

3 Approaches

The components of the tiered reasoning system are
explicitly modeled as submodules in our implemen-
tation. The following present information on each
submodule in detail.

3.1 State Change Prediction

The first task in the pipeline is a supervised learn-
ing problem: to predict the physical state changes

https://github.com/lildutchie99/EECS595FinalProject
https://github.com/lildutchie99/EECS595FinalProject

(pred,

target_dep,
Enhanced [(aux_dep,
Sentences Dependency aux_arg),
Parse Dependency -1 Predicate-Target Tuples

Graph Edges

S1: “Tom put
the potato (put, obj, [(obl:in, owven)])

in the obji(potato, put) (put, obl:in, [(obj, potato)])
obl:in(oven, put)

oven.”

O
Y '
State Change Inference Object State Story. Slmulat|qn/
Changes Conflict Detection
(put, obj, (obl:in, oven)) [>
S1: potato.temperature =
4;17 potato. temp: true (hot)
{temperature: (unknown —> hot)} (unknown —> hot)
Figure 1: Processing the sentence Tom put the potato in the oven.
(pred,
target_dep,
Enhanced [(aux_dep,
Dependenc: aux_arg),
Sentences pParse y Dependency 1)
Graph Edges Predicate-Target Tuples
reheated the obj (potato, (reheated, obj, [])
potato.” reheated)
O
Y |
State Change Inference Object State Story Simulation/
Changes Conflict Detection
(reheated, obj, (,))
.. i}: poi?tg.temp = hot conflict: (S1, S2)
4;17 potato. temp: S8 PReEEmekhEER p?taFo.temp attr: temperature
{temperature: {cold —> hot)} (cold —> hot) = cold not satisfied

Figure 2: Processing the subsequent sentence Tom reheated the potato.

(preconditions and effects) of each story object at
each timestep, given the dataset annotations. For
this task, we employ a dependency graph-based
approach which maps predicate-entity pairs to dis-
tributions over physical state changes.

The obvious first step is to obtain a dependency
graph. For this, we use CoreNLP’s Enhanced++
dependency parser, which provides a graph aug-
mentation of a standard dependency tree by apply-
ing transform rules to add extra edges. While these
transforms don’t add knowledge, they enrich the
graph and make more shallow semantic relations
readily observable. For example, in the sentence
Ann used the blender to make a drink out of cucum-
ber and milk, a standard dependency parse only
relates the verb make and the noun cucumber by
a single vague edge of type obl. However, in an
Enhanced++ graph, there are additional edges of
type obl:out_of from make to both cucumber
and milk; these edges concisely distill the preposi-
tional relation into an edge type, and also resolve
the conjunctive noun phrase to infer that both “cu-
cumber” and “milk" are prepositional objects. This
makes far more semantic information available to
the parsing system.

The system then proceeds by learning a set of
“rule classes", each of which is a tuple consisting
of a predicate (verb) and a typed dependency. A
particular rule class represents the effect of the
predicate on entities which are related to it via this
dependency. For example, in the sentence Tom put
the potato in the oven, the rule class (put, ob7)
encodes the effect of the predicate put on the entity
potato (as there is a dependency graph edge of type
ob j from put to potato, i.e. potato is the direct ob-
ject of put). Similarly, the rule class (put, ob1l:in)
encodes the effect of the predicate put on the entity
oven (obl:in is an enhanced dependency edge
corresponding to a prepositional phrase with the
preposition “in"). Note how the predicate’s differ-
ent effects on each of these entities is informed
by the dependency relation: as the object which is
being put somewhere, the potato undergoes effects
related to the predicate and surrounding context
(in this case, one such effect is that the potato be-
comes hot). Conversely, as the object into which
something is being put, the microwave undergoes
a different set of state changes (for example, it now
contains something). While a rule class often does
not contain enough information to reason about all
physical state changes of an object (knowing that

the potato was put somewhere is not enough to in-
fer that it becomes hot), these rule classes provide a
foundation on which further inferences about state
changes can be made.

To encode this clearly relevant information about
the sentence’s context, we can define a set of auxil-
iary dependencies (ADs) for a particular instance
of a rule class in a sentence, which encode the re-
lation of other objects, phrases, and clauses to the
predicate. Continuing the previous example, for
the rule class (put, ob7j) instantiated on potato,
the one AD present is (ob1 : in, oven). Notice that
this information along with the rule class infers a
lot more information about the state changes of the
potato: it is the general case that if you put some-
thing in the oven, that this something becomes hot.
These are the type of mappings which the system
will attempt to induce from the training data and
apply at inference time to determine state changes.

To learn a state change classifier, for each rule
class, the system estimates a distribution over state
changes for each attribute conditioned on the pres-
ence of each AD tuple (or lack thereof). When
evaluating an instance of a rule class in a sentence,
we can then calculate the state change distribu-
tion of each attribute conditioned on each AD, and
combine the distributions conditioned on each AD
to get the result distribution (more on this later).
Formally, the system is trying to approximate the
following function:

fr(c,a,z) =Pr[C,,=c|z € X;a]
where
* r = (predicate, dep) is the rule class

* cand a are respectively the state change and
attribute whose probability is being evaluated

o x = (auxdep, auxentity) is the auxiliary de-
pendency tuple being evaluated

* C,, is a random variable representing the
state change of attribute a over all instances
of r in all sentences, and

* X, o is arandom variable similarly represent-
ing the set of auxiliary dependency tuples over
all instances of 7 in all sentences.

Note that no joint distribution over auxiliary de-
pendencies is calculated: it was observed early on
that ADs rarely interact with each other (and for

many sentences there is only one to begin with),
so an independence assumption is appropriate. We
therefore only condition on one at a time.

In addition to the normal auxiliary dependencies,
two types of “wildcard" ADs are also included in
the calculated distributions. The first of these has a
wildcard for the entity field, e.g. (obl:in, «*).
This matches any AD with the relation obl:in
regardless of entity, so the distribution for this AD
will be marginalized over auxiliary entity. This
allows us to resolve out-of-vocabulary queries at
evaluation time: when evaluating the distribution of
a particular AD that doesn’t appear in the training
set for a particular rule class but whose relation
does, we can default to the relation wildcard, and
use this marginalized distribution as an informed
guess of the actual distribution for the AD. The
second wildcard marginalizes over all instances
of the rule class regardless of ADs, and therefore
can be used when an unknown relation in an AD
appears.

To combine the independent distributions of each
AD for a particular application of a rule class, a
simple arithmetic mean is used. This helps im-
munize the system against noise in the individual
distributions — even if a particular state change has
a low/zero probability in one distribution due to
never being observed, it can end up being signifi-
cant if it has high probability in the distributions
for other ADs.

3.2 Story State Tracking and Conflict
Detection

To detect conflicts in a story, an object state “sim-
ulation" of the story is performed, i.e. the system
iterates through each sentence, tracking the states
of objects based on predicted preconditions and
effects. The conflict likelihood for a each object-
attribute-timestep tuple is calculated as the proba-
bility that the precondition is violated. Note that
due to its non-binary nature and lack of explicit
preconditions and effects, the 1ocation attribute
is not used or tracked.

To start, the probabilities of all attributes for
all objects are initialized in accordance with
the defaults in the original TRIP paper/codebase.
Per these defaults, the attributes conscious,
exist, functional, andmoveable areall
initiailized to true (¢ = 1) and all other attributes
are initialized to unknown (¢ = 0.5). Addition-
ally, for each attribute of each object, an array

h = (1.0,0.0,---,0.0) with a length one greater
than the number of sentences in the story is initial-
ized. This is known as the affectors distribution:
it tracks the likelihood that a particular sentence
was the last to update an object’s attribute at a spe-
cific timestep (sentence). The first element is the
probability that it was never affected (i.e. by the
initial conditions), while the subsequent elements
correspond to each sentence in order.

Following initialization, for each sentence in the
story (zero-indexed by j), the following steps are
performed:

1. The distributions of state changes for each
attribute of each object (entity) are predicted.
Objects not appearing in the sentence or that
don’t match a rule class are unaffected.

2. Precondition and effect probabilities for each
attribute of each object are calculated based
on the state change distribution. The result is:

(a) Ppos, Pneag, and PyonE for the prob-
ability of a positive, negative, and null
(nonexistent) precondition respectively,
and

(b) Epos, Enea, Eunk, and EnonE for
the positive, negative, unknown, and null
effects, respectively. Notice that “un-
known" and “none" have a subtle but
important distinction: the former indi-
cates uncertainty in the attribute (higher
FEy Nk pushes state probability towards
0.5), while the latter indicates no effect at
all (the state as of the previous sentence
is unmodified).

3. Calculate and store the conflict likelihood for
each attribute of each object. Given the state
probability g of some attribute being true for
some object:

Peonsi=q- Pnec + (1 —¢q) - Pros

which is equal to the probability that the pre-
condition is violated.

4. Update the state probability of each attribute
of each object for the next sentence:

¢ = (Epos, Exra, Eunk, Enong) - (1, 0, 0.5, q)

i.e., calculate the expected value of the state
probability given the effects distribution.

5. Update the affectors distribution for each at-
tribute of each object based on FnonE:

W =h-Exonp

R[j+1] < (1 — ExonE)

i.e. the probability of all other sentences being
the affector is scaled by the probability that
this sentence is irrelevant, and the probability
of this sentence being the affector is the prob-
abilility that it is relevant (the complement of
ENONE).

With the results of this simulation, the system
then proceeds to extract results for the plausibil-
ity, consistency, and verifiability tasks. We begin
with plausibility. For each story, the argmax of the
affector distribution for each object, attribute, and
timestep is taken to determine the evidence. This re-
veals which sentence (if any) exerted the strongest
influence on a particular object attribute at the time
of the conflict (the breakpoint). If this indicates that
the conflict was with the initial states (i.e. no sen-
tence has significantly affected the state), we don’t
consider this conflict as we assume all conflicts
must be between two sentences. Out of all remain-
ing conflicts, we select the one with the highest
probability. The story with the higher such conflict
probability is selected as the implausible story.

With the implausible story decided, the system
proceeds with the consistency task. Observe that
the timestep (sentence index) of the selected con-
flict is the breakpoint, as this is the sentence at
which the selected conflict arised. This is returned
along with the evidence as calculated in the previ-
ous paragraph. For the verifiability task, we simply
return the most likely precondition at the break-
point sentence, and the most likely effect at the
evidence sentence, for the object and attribute cor-
responding to the selected conflict. While the veri-
fiability task doesn’t require that the selected pre-
condition and effect states be directly related to the
conflict (so long as they are non-default), this policy
will always output the states which were directly
used to infer the conflict, providing an additional
level of interpretability and clarity.

4 Evaluation

We will first introduce the results from the state
change prediction task. In correctly predicting state
changes, the proposed system achieves a precision
of 81.6% and a recall of 51.4%. F-1 scores for the

H Preconditions F1 | Effects F1

Best from Paper 54.9% 57.3%

65.4% 64.6%

This System

Figure 3: Comparison of F1 between best model from
TRIP paper and this system on test set.

Split | State Conflict Percentage
train 22.9%
dev 21.4%
test 23.4%

Figure 4: Portion of implausible stories with at least
one conflict (violated precondition) between the
evidence and breakpoint sentences.

prediction of preconditions and effects separately
compared with the best model from the TRIP paper
is shown in Figure 3.

Before introducing the results from the TRIP
end tasks, we will present a statistic collected on
the dataset itself, which will allow us to better un-
derstand the later results. Because our system uses
explicit object state tracking to infer conflicts, an
informative measure is the proportion of story pairs
for which the evidence sentence (or at least one of
them if multiple) has an effect which directly vio-
lates a precondition of the breakpoint sentence. If
no such pair exists, the reasoning system presented
herein would be unable to deduce its implausibility
any better than random chance, even if all state
change predictions are correct. The state conflict
percentage for each split is presented in Figure 4.

With this in mind, we created a subset of the
dataset containing only instances where the evi-
dence and breakpoint have a state change conflict
as described. We then evaluate the plausibility,
consistency, and verifiability performance of our
model on both the original test set and this refined
version. In each of these cases, we also evaluate the
system with the state change predictions replaced
with the ground truth annotations from the dataset.
This helps us understand the performance of the
conflict detector in isolation, as well as how useful
the state change predictor is in practice. The results
are shown in Table 5.

For comparison, the best results on each task
across all models evaluated in the original TRIP
paper are included in Table 6.

H Entire test set Refined test set

Predicted State Changes 547% 1 9.5% | 6.4% | 65.0% / 27.8% /| 21.4%

Ground Truth State Changes || 64.6% / 20.1% / 18.8% | 91.9% / 76.7% | 72.8%

Figure 5: Performance on TRIP plausibility/consistency/verifiability tasks in various configurations

Accuracy | Consistency | Verifiability
Best Model 78.3% 28.0% 10.6%
Random Baseline | 47.8% 11.3% 0.0%

Figure 6: Results for best model and random baseline in the TRIP paper on each of the proposed tasks.

5 Discussion

The results on the end task in the standard con-
figuration are notably poor, with the accuracy of
54.7% being only slightly better than a random
guess. Also discouraging is the fact that the consis-
tency score is lower than that of the random base-
line. Interestingly, however, the verifiability score
is higher than the baseline’s 0%, suggesting that
the system is able to make a statistically significant
number of verifiable predictions.

Reasons for the poor performance are illumi-
nated by the other results. When ground truth state
changes are used instead of those predicted by the
dependency graph system, the accuracy makes a
modest climb to 64.6%, but the consistency and
verifiability double and triple, respectively. This
makes sense given the poor recall of 51.4% for the
state change predictor, which appears to be miss-
ing out on a lot of attributes relevant to conflicts.
However, it is interesting to note that despite hav-
ing far worse end task performance, this model
does have a higher F1 score in preconditions and
effects than does the best model from the paper.
This would seem to suggest that the paper’s system
relies less on the physical state changes for reason-
ing, as it is still able to get relatively good end task
performance without a complete understanding of
physical states.

We also see that, with errors from the state
change prediction state eliminated, this system is
able to not only achieve a greater verifiability than
the best LM-based model but also has a greater
fraction of correct plausibility predictions which
are verifiable (28.0% vs 14.4%). Obviously this
is far from an apples-to-apples comparison as the
LM models don’t have access to ground truth state
changes, but it nonetheless suggests the effective-
ness of this system’s method of reasoning if paired
with a more successful state change predictor.

This becomes all the more clear when we look
at results on the refined test set, which only con-
tains stories whose evidence and breakpoint sen-
tences have some state conflict/violated precondi-
tion. Clearly, any model which bases its decisions
on state changes (such as ours) would be unable
to make informed decisions on data with no such
conflicts. Interestingly, we see that the dataset as a
whole has a surprisingly low fraction of such sto-
ries, with all splits in the low-mid twenties. This
suggests that, while the state change annotations
may be useful in supervising the intermediate rea-
soning of models, they don’t themselves contain
enough information to make plausibility decisions
on the majority of the dataset. There are plenty of
reasonable explanations for this, most notably that
the relatively simplified state space consisting of a
handful of binary attributes will fail to capture the
conflict in many stories even if well-annotated.

Filtering out such stories that lack an evidence-
breakpoint conflict shows drastic improvements
around the board. The combination of the refined
test set with the ground truth state changes shows
that in isolation, when only given stories with con-
flicts which are understandable via state changes,
the story simulator/conflict detector performs very
well, with the majority of correct predictions being
consistent and verifiable. Even when using the pre-
dicted state changes the improvement is significant,
particularly in consistency and verifiability. To-
gether, these results show that this system is fit for
performing inference on data which is thoroughly
explained by state changes, but that the majority of
TRIP is too diverse to be effectively reasoned over
using state changes alone.

6 Conclusion

Despite the underwhelming performance of the
system as a whole, the performance comparison

provided valuable insights on the nature of both
the TRIP dataset as well as the problem it repre-
sents. Notably, we found that over 75% of implau-
sible sentences in TRIP don’t have a breakpoint-
evidence conflict in physical state annotations,
which severely limits the performance of a system
which relies on this intermediate representation as
the core element of its reasoning. However, when
these “impossible" stories were controlled for, we
saw a sharp increase in performance, showing this
system’s effectiveness on data with a tight semantic
linkage between sentences and state annotations.
However, TRIP as a whole is evidently too broad
and open-domain to be reasoned over using only
these physical state changes, so this system isn’t
particularly suited for it. These results pose a re-
minder that for many real-world datasets, creating
intermediate annotations that fully explain the data
is difficult if not completely infeasible, so effective
approaches will need to conduct inference on more
information than just the annotations.

References

Rinaldo Lima, Bernard ESPINASSE, and Fred Fre-
itas. 2019. A logic-based relational learning ap-
proach to relation extraction: The OntoILPER sys-

tem. Engineering Applications of Artificial Intelli-
gence, 78:142-157.

Shane Storks, Qiaozi Gao, Yichi Zhang, and Joyce Chai.
2021. Tiered reasoning for intuitive physics: Toward
verifiable commonsense language understanding.

https://doi.org/10.1016/j.engappai.2018.11.001
https://doi.org/10.1016/j.engappai.2018.11.001
https://doi.org/10.1016/j.engappai.2018.11.001
http://arxiv.org/abs/2109.04947
http://arxiv.org/abs/2109.04947

