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Abstract

In recent years, large pre-trained language mod-
els, from GPT-3 to Bert, has draw broaded at-
tention in NLP fields, and inspired tons of re-
lated inspections for years. With more datasets
and higher number of parameters, they outper-
form humans in many NLP subtasks, and are
achieving higher scores each year. However,
concerns are also raised from these seemingly
perfect scores. The interprebility of machine
learning models have always been a problem,
and researcheres are curious about whether ma-
chines truly understand the reasoning behind
these NLP tasks, or just learn the superficial
labeling skills. More recently, a new common-
sense dataset TRIP, (Tiered Reason- ing for
Intuitive Physics), are brought up to deal with
these concerns, with three valuable key metrics:
accuracy, consistency, and verifiablilty. By
evaluating this dataset on large machine mod-
els, we are hoping to reveal hints on whether
they can do the real reasonings. In this paper,
we examined the performance of XLNet on
TRIP, and

1 Introduction

In recent years, lots of benchmarks are developed
from large-scale pre-trained language models and
are proved to be effective for many natural lan-
guage processing problems, such as BERT, (Bidi-
rectional Encoder Representations from Transform-
ers) (Devlin et al., 2019), RoBERTa, (Robustly
Optimized BERT)(Liu et al., 2019), DeBERTA,
(Decoding-enhanced BERT) (He et al., 2021). All
these three models are variant of Transformers
(Vaswani et al., 2017), which apply self-attention
in computation, and achieve greater results than
recurrent neural networks (RNN). Nowadays, these
fine-tuning based models can achieve excellent per-
formance on sentence-level as well as token-level
tasks, such as commonsense reasoning, (Talmor
et al., 2019), commonsense inference, (Bowman
et al., 2015) and much more. These wonderful re-

sults also stimulate people towards using more data
to train models, and resulted in even larger amount
of parameters. For example, in the first genera-
tion of GPT, the total number of parameters are
117 Million, (Radford et al., 2018), which is about
the same number of Bert-Base 110 Million, (De-
vlin et al., 2019) at that time. However, two years
later, GPT-3 has more than 175 Billion parameters
(Brown et al., 2020). It’s no doubt that higher num-
ber of parameters brought better performance, yet
whether they have a truly understanding about their
tasks remained in mystery. Previous works from
Gururangan, et al. mentioned that, for text classi-
fication task, some specific linguistic phenomena
like negation can be highly correlated to some la-
bel classes, resulted in machine models are doing
the inference tasks without the needs to understand
whole text. (Gururangan et al., 2018). Moreover,
Poliak et al suggests that statistical irregularities
may reduce the difficulties of NLP tasks into nat-
ural language inference, which allow a model to
do classification without accessing to the text con-
tent. As a result, to address these concerns, Storks,
et al brought up a Tiered Reasoning for Intuitive
Physics (TRIP) dataset (Storks et al., 2021). This
dataset consists of pairs of stories, which one of
them is plausible, and anothere is not. Every story
is of short sentences, and the task for large mod-
els is to determine which one of them is plausible,
and the break point where story cannot be achieved
in physic worlds, and also the physic annotations
changed along it.

In this paper, we will mainly focus on the per-
formance of XLNeet on TRIP, like in the origo-
nal TRIP paper, XLNet will need to determine the
plausible story, the pair of conflicing sentences in
the implausible story, and which of physical states
leads to the conflicting story.

The contributions of this work can be it tried to
implement on other large pre trained models other
than Bert, Roberta, and Deberta. The results can



Story A

1. Ann sat in the chair.

Story B

2. Ann unplugged the telephone.
3. Ann picked up a pencil.
4. Ann opened the bc

5. Ann wrote in the book.

1. Ann sat in the chair.

2. Ann unplugged the telephone.
3. Ann picked up a pencil.

4. Ann opened the boc

! 5. Ann heard the telephone ring. ||

Which story is more plausible? A
Why not B?
Conflicting sentences: 2 — 5

Physical states:

Powered(telephone) —>~Powered(telephone) o, @@y

Powered(telephone) —» Powered(telephone) @
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Running(telephone)

Figure 1: A story pair from TRIP dataset (Storks et al., 2021)

be used to support that reasoning process might
be lost in many current employed large machine
models, and motivating future work on solve these
problems.

2 Related Work

2.1 Tiered Reasoning for Intuitive Physics

Using artificial intelligence to solve physics com-
monsense reasoning calls people’s attention on a
new field that are making slow progress a few years
ago: ordinary commonsense (Davis and Marcus,
2015). It focus on problems that can only be solved
using a certain amount understanding about the
real world. Later, many people are drawn to these
subfields (Marcus, 2018; Sap et al., 2019; Lin et al.,
2019). For humans, it seems that children learn
common sense reasoning as they grow up, and
benefited with daily interaction with environment
around them (Bliss, 2008). They then argue that
human reasonings are consists of different schemes,
where schemes are interacting with each other. By
contrast, machines seem to struggle with reason-
ing. Evidence shown that although large neural
networks can related objects with tons of related
information, it fails to capture more subtle interplay
properties (Forbes et al., 2019).

2.2 TRIP dataset

TRIP dataset is developed to facilitate discoveries
in this domain. Stories in this dataset are all written
by human authors, with every story is of concrete
physical actions (Storks et al., 2021). Every two
stories are connected as a pair, which only one
difference in it is that one of them consists a sen-
tence that will make the whole story implausible.
Moreover, each story are consists dense physical
annotation words. An example from Storks et al are
shown in figure above. Line 5 is the difference in
these two stories, which makes Story B implausible.
Then, the line 2 is the breakpoint, as the telephone

cannot ring after the telephone is unplugged. The
task for machine models then is to first determine
which story is possible to happen in real world. For
such predictions to be made, one must have the
knowledge of verb causality, the ability to sense
the change of states of an object from the verb
world, such as after melting, the object will be in
liquid form; It have to know precondition, that for
an object to be cut, it has to be in solid form; It
also have to know the rules of intuitive physics, for
example, two solid objects cannot pass each other
(Storks et al., 2021). To minimize objectivity, each
author are asked to write simply and declarative
sentences related to concrete actions that can be vi-
sualized in the physical world (Storks et al., 2021).
To maintain the plausibility in longer context, un-
like previous work that only have one sentence of
context (Zellers et al., 2018), authors are asked
to write at least five sentences long stories, and
each sentence of them should be plausible solely
(Storks et al., 2021). In such way, the story can be
less influenced by distributional biases. Moreover,
three levels of 20 physical annotations are provided
in this dataset to enable systematic review, which
corresponds to the three tasks.

2.3 Tiered Baseline for TRIP

Since our project is mainly developed on Storks et
al’s paper (Storks et al., 2021), we adapted to their
baseline structures.

Contextual Embedding

This module is implemented with a pre-trained lan-
guage model. In our case, we used HuggingFace
pre-trained XL Net as our model (Wolf et al., 2020).
Our input stays the same with Storks et al’s work,
which takes an input sentence, the name of entity,
and an entity-first input formulation. The output
then is a contextualized numerical representation
of it (Storks et al., 2021).
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Figure 2: Tiered reasoning system structure (Storks et al., 2021)

Precondition and Effect Classifiers

In this module, we have one precondition classifier
and one effect classifier for each of the 20 physical
attributes. Softmax is then used for generating the
output (Storks et al., 2021).

Conflict Detector

The task of this module is to predict whether there
is conflicts existing in the entity’s physical state,
and find a pair of sentences that might be the cause
of it. Another transformer is used at here, but the
input is the contextual embedding, and the classifi-
cation logits. The output then is the probability of
each sentence conflicting with another sentence in
the story (Storks et al., 2021).

Story Choice Prediction

The last remaining task is then to output which
story is classified as plausible. Given the output
from last module, we sum negative outputs and
apply softmax for output (Storks et al., 2021).

2.4 BERT

BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2019), is built
on Transformer networks (Vaswani et al., 2017)
to predict a masked word from its context, and to
classify whether two sentences are consequent to
each other or not.

Opposed to directional models that read the text
input sequentially, Transformer encoder in Bert
reads the entire sequence of words at once. By
adding this feature, model can learn the context of a
word base on its surroundings. Masked words from
input are replaced with Masked LM(MLM), with

15% of the words in each sequence to be replaced
by a [MASK] token.

During training, Next Sentence Prediction is
used, that 50% of the inputs are a pair of sequential
sentence in the original document, and the rest 50%
of the sentence is choose randomly in the corpus.

The goal in the whole training process is to min-
imize the combined loss of these two strategies.

2.5 DeBERTa

DeBERTa, (He et al., 2021), is also a Transformer
based neural networks (Vaswani et al., 2017). The
motivations for this task is that the attention for a
sentence should not only depend on the words in
it, but also their relative positions. For example,
dependency of adjacent words will be stronger than
split words. Therefore words in the input layer and
the positions of word in sentences are reconsidered
in DeBERTa (Vaswani et al., 2017). Unlike words
are represented using a vector of sum of their
content embedding and position embedding, words
are represented using two vectors that take care
of content and position respectively (He et al.,
2021). In this manner, disentangled attention is
used to represent the strength of position as well
as content. The enhanced mask decoder also take
positions of words in sentences into consideration.
Moreover, unlike relative positions used in BERT,
DeBERTa used the absolute position in modelling
processes, allowing syntactical nuances to play
their roles (Vaswani et al., 2017).

2.6 RoBERTa

RoBERTa, Robustly Optimized BERT (Liu et al.,
2019). Compared to BERT, it made several ad-
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Figure 3: BERT Architecture (Devlin et al., 2019)

justments: 1) It used larger batch size (2k and 8k),
compared with original 256 in BERT (Liu et al.,
2019) and therefore longer time in training. 2) It
used dynamic masking, that mask is done when
feeding the input to the model, compared to BERT
that perform masking in data preprocessing (Liu
etal., 2019). In this way, same mask can be avoided
using on training instance in every epoch.

2.7 XLNet

In BERT, [MASK] are used in pre-training, while
in fine-tuning [MASK] is unavailable. Therefore, a
disagreement exist in these two modes. To address
this issue, XL.Net used auto regressive LM, with the
sentence still take inputs from left to right, but have
both the context_before and context_ after (Yang
et al., 2019). To achieve that, XLLNet used Per-
mutation Language Model, which will randomly
do permutations for a given sentence, with a word
fixed. Then, they will also be used as input for LM.
In this way, for the fixed word x, its before_context
and after_context can all be used during training,
while stays in the form of predicting a word from
left to right (Yang et al., 2019).

3 Approaches

We mainly use XLNet from Huggingface as our
pre-trained model (Wolf et al., 2020). Then we per-
form grid search to find the best hyperparameters
combinations. The setting of training and evalu-
ations are same as Storks et al’s work in order to
facilitate comparison in section 4.

4 Evaluations

4.1 Evaluation Metrics (Storks et al., 2021)

The following metrics are used in order to measure
machines’ ability in reasoning task.

Accuracy. (Storks et al., 2021)

The proportion of plausible stories are correctly
identified.

Consistency. (Storks et al., 2021)

The proportion of both plausble stories as well as
conflicting pairs of stories are correctly identified.

Verifiability. (Storks et al., 2021)

The proportion of stories that not only fulfill con-
sistency, but also identify the underlying changed
physical states. If we suppose accuracy a, consis-
tency b, verifiability c, then for a reliably coherent
machine model, a ~ b ~ ¢ (Storks et al., 2021).

4.2 Results

Four loss functions are used during the training:
L,, for precondition classification, L for effect
classification, L. for conflicting sentence detection,
and L; for story choice classification (Storks et al.,
2021). The results of using these loss functions on
XLNet as well as previous benchmarks are shown
in Table 1. We can notice that, its performance is
similar to previous work, that achieve high on accu-
racy, but stay lower on consistency and verfiability.

When fine-tuning RoOBERTa’s contextual embed-
ding directly to the end task, it achieved up to
97% accuracy, but then have pretty low verifiability
(Storks et al., 2021). Our model also showed this
pattern along training processes.
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Figure 4: Illustration of permutation language modeling (Yang et al., 2019).

4.3 Discussion

My group got questions about is there any reason
to use XLNet. We choose to use XLNet came from
a very intuitive thought, but it might be fun to think
about are there any structures of XLNet that might
correspond to the results in my experiment. The
permutation modeling structure that enable both
above and below context to be referenced might
be a reason for it. If we have more time, it might
worthy experimenting with.

4.4 Conclusion

In this project, we used TRIP, a dataset for phys-
ical commonsense reasoning on XLNet. Several
variations are used. Our results shows that XL-
Net, although perform well on classification tasks,
fails to stay consistent and verifiable for underlying
physical reasoning.

4.5 Github Repository Link
The table related NoirChad
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