
Pretrained Commonsense Language Models and Memory Networks for
TRIP

Muhammad Khalifa
khalifam@umich.edu

James Tavernor
tavernor@umich.edu

Abstract

In this project, we investigate whether it is
possible to improve the underlying reasoning
of the Tiered Reasoning for Intuitive Physics
(TRIP) baseline model. We look at the consis-
tency and verifiability metrics across three main
approaches. The approaches investigate how
performance may be affected through changes
made to the contextual embeddings, transfer
learning, or the introduction of memory net-
works for tracking entity states. We find that
through the first two approaches, we saw a
slight overall improvement in end story accu-
racy. However, the verifiability and consistency
metrics have not improved. The third approach
shows an overall decrease in all metrics, though
this may be due to training limitations imposed
by GPU memory limitations. We have provided
insights into the results, and avenues for future
work to further verify our results. Lastly, for
the EntNet implementation, we have discussed
where we think problems lie and how these
could be further investigated given more time1.

1 Introduction

While pretrained language models have achieved
stellar results on a variety of natural language un-
derstanding tasks, it is still questionable the extent
to which they truly understand language as humans
do. In this work, we focus on the task of story plau-
sibility classification known as TRIP (short for
Tiered Reasoning for Intuitive Physics) and pro-
posed by Storks et al. (2021). The task aims at
measuring not only the ability of a model to clas-
sify a task as plausible of not, but also the ability of
a model to justify or explain its prediction. More
specifically, given two similar stories that differ
only by one sentence and only one of which is
implausible, the system is required to solve the
following three tasks:

1Our code is available at https://github.com/
mukhal/tiered-reasoning

1. Story Classification: Identify the implausible
story.

2. Conflict Detection: Highlight the two con-
flicting sentence in the implausible story.

3. Physical State Classification: Identify the un-
derlying physical states causing the conflict.

In a general sense, The TRIP benchmark aims
to measure an NLP system’s coherence in high-
level plausibility prediction by measuring if the
prediction can be supported or verified by low-level
evidence.

In this project, our goal is to improve the per-
formance on the TRIP task. As shown in (Storks
et al., 2021), state-of-the-art language models do
not seem to perform well on the task especially
in terms of both Verifiability and Consistency.
Therefore, in this project, we aim at improving the
performance in terms of such metrics. We exper-
iment with three different approaches: Common-
sense Contextual Embeddings, transfer learning
with relevant reasoning tasks, and improving Entity
classification with memory networks.

Our report is organized as follows: Section 3
describes all our proposed techniques, Section 4
presents our results and discussion, Section 5 is our
conclusion, and Section 6 shows the contribution
of each team member.

2 Previous Work

The existing baseline for this problem proposed
in the TRIP paper (Storks et al., 2021) uses a se-
ries of incremental neural networks to learn the
associated tasks from the dataset. Given an input
pair of stories, each sentence is then broken into
entity-sentence pairs for each entity in the sentence.
These pairs then pass through a pre-trained lan-
guage model to produce contextual embeddings.
The model learns the precondition and effect phys-
ical states for this entity-sentence pair from the en-

https://github.com/mukhal/tiered-reasoning
https://github.com/mukhal/tiered-reasoning


John wanted to clean a stain on his shorts. 
John turned on the faucet. 
John changed into new shorts.
John took off his shorts. 
John put his shorts in the sink. 

John wanted to clean a stain on his shorts. 
John turned on the faucet. 
John grabbed the detergent. 
John took off his shorts. 
John put his shorts in the sink.

conflicting!

Story A Story B

Figure 1: An example from the TRIP dataset (Storks et al., 2021). The story on the left is implausible due to
conflict between the third and fourth sentences (highlighted in shades of red). The system is required to identify the
implausible story, identify conflicting sentences, and identify underlying physical states causing the conflict.

codings and then utilizes all information to predict
conflicting sentences and the overall story plausi-
bility prediction.

A similar task, defined in the bAbI dataset (We-
ston et al., 2015), involves simple question and
answer tasks that revolve around the knowledge
of the entity states in a given series of sentences.
While not directly related in terms of looking at
the plausibility of sentences, it focuses on ques-
tion answering about entities in a story. However,
one would assume that knowledge of their states
is required to answer questions about the entities,
which is a related problem. Various tasks in the
dataset test different types of reasoning relevant
and related to TRIP. For example, temporal rea-
soning is tested in task 14 of bAbI. The dataset
is machine-generated and only looks at the end-
task performance, so it may be a concern that the
models developed for the bAbI dataset do not truly
understand the entity states to answer these ques-
tions. However, the implementations may still be
of interest.

One such proposed model that succeeds in all
20 question and answer tasks on bAbI is EntNet
(Henaff et al., 2017). In the EntNet model, inputs
are initially encoded to a vector of fixed length. The
authors suggest that any standard sequence encoder
should work here. The inputs then pass through
dynamic memory cells, which each contain vectors
representing a key and value. The general idea is
that each cell will learn to represent concepts or
entities, and as such, the content is modified at the
locations defined by the encoded input combined
with the key vectors. When trained using 10k ex-
amples on the bAbI dataset, EntNet succeeds on all
20 tasks.

Other works have investigated the level of lin-
guistical content captured by BERT. In one such
paper, the authors investigate the linguistic struc-
ture learned by BERT and contained within the dif-

ferent layers of BERT(Jawahar et al., 2019). The
lower layers of BERT perform better when pre-
dicting surface-level tasks such as word count and
sentence length. In comparison, higher layers gen-
erally seem to perform better for tackling semantic
tasks. The authors suggest that it may be the case
that BERT can learn more complex information
through further training but that this comes with
a decreasing performance on surface-level tasks.
The authors determine that the encodings produced
by BERT capture surface, syntactic, and semantic
linguistic signals. On the other hand, similar inves-
tigations suggested that these pre-trained language
models encode syntax more than the higher-level
semantic tasks(Tenney et al., 2019). However, the
models still encode semantic representations, but
the improvements over non-contextual representa-
tions are not as significant.

3 Approaches

In this project, we explore three orthogonal ap-
proaches to improve performance on the TRIP task.
Our first approach is based on injecting common-
sense reasoning ability into the pipeline proposed
by (Storks et al., 2021) by means of a pre-trained
commonsense language model. The second ap-
proach proposes that the classifier heads used for
precondition and effect state classification are not
capable of modelling the changes of entities over
time and aims to implement a head designed for
entity state tracking. We start by detailing our first
approach (§ 3.1) and then we move to our second
approach (§ 3.3).

3.1 Contextual Commonsense Embeddings
In this section, we first introduce COMET and then
we describe how we integrate it into the pipeline
proposed by (Storks et al., 2021). Pre-trained lan-
guage models have been shown to lack common-
sense knowledge required for various tasks (Klein



Figure 2: COMET pre-training procedure (Bosselut
et al., 2019). As shown, COMET was pre-trained on
ATOMIC to predict relation objects.

and Nabi, 2021). The main model proposed by
Storks et al. (2021) relies on pre-trained BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019)
to compute contextual embeddings for sentences
and entities, which are then used for both precon-
dition and effect prediction. We hypothesize that
we can obtain better contextual embeddings if we
use models that are more fit for commonsense rea-
soning tasks. One such model is COMET (Bosse-
lut et al., 2019). COMET is a transformer model
pre-trained on a commonsense triplets to predict
the object of a relation given both the relation and
its subject. COMET was pre-trained on ATOMIC
(Sap et al., 2019), which is a large commonsense
knowledge base with different relations. Such re-
lations includexEffect, which represents the ef-
fect of some action on some entity, and xIntent,
which represents the intent of an entity when per-
forming some action and so forth. Figure 2 shows
the COMET pre-training procedure on ATOMIC.
Figure 3 shows the full pipeline with COMET.

Our proposed approach is very simple; Instead
of using a pre-trained language model to compute
contextual embeddings of sentences and entities
as done by Storks et al. (2021), we use COMET
instead. While the approach seems simple, two
important questions arise. First, unlike BERT and
RoBERTa, we can not use the [CLS] token to ex-
tract embeddings since COMET (which is based
on GPT-2) does not have special tokens. So how
should we extract contextual embeddings from
COMET? We can do max-pooling, average pool-
ing, or introduce a new special token, all of which
are valid options. The second question is how to
encode both the sentence and the entities before
feeding them to COMET.

To answer the first question, we experiment with
both max-pooling and average pooling and show
the results when using both methods. To answer
the second question, we concatenate the sentence
and the object separated by some special string.
For example, given the sentence “Ann cracked an
egg into the pan” with the entity “egg”, the input to
COMET becomes “Ann cracked an egg into the pan

<OBJ> egg ”, where <OBJ> is the special string
used to designate the end of the sentence and the
start of the entity.

We faced a few obstacles when integrating
COMET into the TRIP pipeline. First, we needed
to change data preprocessing to enable encod-
ing and tokenization of the TRIP data using the
COMET tokenizer. It is worth noting that COMET
implementation2 is based on an early implementa-
tion of GPT-2. So, we could not use HuggingFace.
Instead, we had to write our own function that to-
kenizes and encodes the input sentence and entity
as described above. Second, we had to match the
rest of the pipeline with the output dimension of
COMET, which required some code modifications.

3.2 Transfer Learning from Relevant Tasks

Since the size of TRIP is relatively small, one ob-
vious direction is to train on more data that come
from relevant reasoning tasks i.e., transfer learn-
ing. One such task is Goal-Step Reasoning (GSR)
(Zhang et al., 2020), which involves three sub-tasks:
Goal inference, step inference, and step ordering.
Goal inference is the task of selecting an appropri-
ate goal from four possible choices given a specific
action or step. Step inference involves selecting the
correct step given the goal. Finally, step ordering is
the task of predicting the correct order of two steps
given a goal. Figure ?? shows an example from
the WikiHow dataset.

We choose to pre-training on the goal inference
task since intuitively, knowing the goal of specific
action should be useful in identifying possible con-
flicts. For example, let us consider the sentence
"John changed into new shorts" in Figure 1. Hav-
ing some understanding of the goal of the first ac-
tion, which could be to "go out", or "go to bed" is
likely to signal a conflict when encountering the
sentence "John took off his shorts". Therefore, we
argue that the goal inference task is would be more
helpful than other tasks. The GSR dataset we use
is proposed in (Zhang et al., 2020) and comes from
WikiHow and is relatively large (∼ 190K examples).
The GSR task could be used in either a pretraining
or multi-task learning setting with TRIP. In this
project and due to time constraints, we experiment
only with pre-training. It is worth noting that, in
a sense, what we are doing here can be thought of
as data augmentation. Since the size of the TRIP

2https://github.com/atcbosselut/
comet-commonsense

https://github.com/atcbosselut/comet-commonsense
https://github.com/atcbosselut/comet-commonsense


Figure 3: The pipeline proposed (Storks et al., 2021) with COMET used for contextual embeddings. The input
sentence and entities are separated by a special string <OBJ> and the embeddings are extracted using either max- or
average pooling.

Figure 4: An example from the goal-step reasoning task
proposed in (Zhang et al., 2020). The dataset consists of
various steps and goals collected from WikiHow. Three
tasks are proposed: predict step given goal (step infer-
ence), goal given step (goal inference), and correctly
order steps. Here, we focus on the goal inference task
and use it to pre-train our contextual embedding model
before fine-tune it on TRIP.

dataset is relatively small, it makes sense to use
more data from relevant sources, whenever possi-
ble.

3.3 EntNet
Given that work has shown that syntactic and se-
mantic linguistic signals are captured by BERT
(Jawahar et al., 2019), we hypothesize that there
is a strong enough representation to capture the
precondition and effect states of the entities. How-
ever, even with the loss associated with story choice
omitted in the TRIP paper, the verifiability remains
at only 10.6% with RoBERTa (Storks et al., 2021).
As such, it may be that the classifier used on the em-
beddings cannot fully utilize the linguistic content
in the embeddings. A starting point to investigate
this may be to implement a classifier based on the
Recurrent Entity Network (EntNet) (Henaff et al.,
2017). We had considered that alternatively, pro-
viding the full story context to BERT may improve

results by providing a richer contextual embedding
if the EntNet approach fails. However, the Ent-
Net approach was challenging to implement and
required significant changes to the data pipeline,
and as such we only pursued the EntNet implemen-
tation.

3.4 TRIP Data Preprocessing Changes

EntNet is not designed for processing data in the
format that TRIP provides data. Since EntNet ex-
pects a whole story to be input and then a query
string to answer questions about entities in the story,
we need to make modifications such that TRIP data
can be input in this manner. Since we want to re-
call information about the attributes of particular
entities, we decided to use an encoding of the entity
name as the query string to provide to EntNet. The
idea is that the EntNet classifier heads will learn to
associate different blocks of memory with different
entities and retrieve the relevant attribute knowl-
edge using the query string of the entity name.

We considered modifying the contextualized em-
beddings only to contain sentences since the en-
tity query string could replace the association of
entity-sentence pairs. However, due to memory
limitations, we had to use the same embedding for
the full network, and the EntNet heads. We didn’t
want to make significant changes to the base model
pipeline, so we used the original entity-sentence
pair embedding for the full model, and the Ent-
Net heads. Initially, we transposed the input such
that the num_sents dimension is the first dimen-
sion since we need to pass the data in sentence-by-
sentence to the EntNet heads. However, initial train-



ing results suggested this may have changed the
inputs far too significantly for the rest of the model.
Intuitively we thought this might improve sentence-
by-sentence input as it may preserve the ordering
of the sentence. The overall model performance
seemed to perform poorly, and we thought it might
be due to the reshaped inputs, so we also tested
the model using the original embedding shapes,
passing a view of the embeddings to the EntNet
heads.

3.5 EntNet Changes

Since the baseline TRIP model uses a classifier
head for each attribute for both precondition and
effect classification, we attempted to implement a
head based on the EntNet model to replace these.
The EntNet model will read a story and then answer
questions on the story using an input query string.
The model retains knowledge of the world state
through the use of gated memory cells(Henaff et al.,
2017). Since the cells update after each sentence,
we speculate that we need to make predictions after
each sentence passes through the EntNet model.
The world state knowledge retained will change
as each sentence passes through since EntNet is
designed to answer questions at the end of the story.
We thus use the modified embeddings outlined in
Section 3.4 by feeding a sentence through the mem-
ory cell and then taking the hidden states and mak-
ing a prediction through the EntNet output module
after each sentence to make predictions about entity
states at that sentence.

Ideally, we would have made the number of
memory cells in the EntNet heads the same as the
number of entities in the story and used a hidden
state of the same size as the encoded inputs. How-
ever, this proved infeasible as the models’ memory
usage became far too large. As such, we added a
linear layer to project the size of the encoded input
and query string down to a hidden size of 32 and
used 4 memory cells in each EntNet head.

3.6 CUDA Memory Limitations

The EntNet model is heavy and better suited as
a full model rather than as multiple heads on an-
other model. Having a total of 40 EntNet heads
in as the classifier heads resulted in significantly
higher memory usage. In order to reduce memory
usage such that testing the model was possible, we
had to introduce several limitations to the training
pipeline.

As discussed previously, we had hoped to use
a memory cell per entity and a hidden size the
same as the dimension of the word embeddings.
However, this was very infeasible. The embeddings
for the sentences had to be shared with the input
to the rest of the model, while it likely would have
been better to use separate smaller embeddings for
the EntNet heads. Performance may have been
better if the original embeddings were not changed
for the base model, and instead, a simpler input
encoding, such as Bag-of-Words, was added to the
dataset and used for EntNet heads.

The memory usage was still too high after reduc-
ing the model size to a hidden dimension of 32 with
4 memory cells per head. To further investigate,
we implemented code to monitor the GPU memory
usage and changes in the Python garbage collector
throughout the training code to identify where Py-
Torch tensors were being created and causing the
memory to run out. Through this, we determined
that the AdamW optimizer was doubling the mem-
ory usage for the model since the added EntNet
heads increased the number of model parameters
significantly. The optimizer had to be changed
to reduce memory usage, and by changing it to
Stochastic Gradient Descent, the memory usage
was finally low enough to train.

The code could run following the size reduction,
shared input embeddings, and changing the opti-
mizer, but the training was extremely slow. We im-
plemented FP16 Mixed Precision training, which
significantly increased the training speed though it
is still a very long process. Training the maximum
of 10 epochs specified in the base code takes over
6 hours, depending on the EntNet head parameters,
so the EntNet implementation is trained for only
2 epochs. The limited-time of the project and the
required time to train the model have reduced the
amount of investigation performed into the model’s
performance.

3.7 Oversight in TRIP Baseline

While investigating the memory usage of EntNet,
we noticed that the EntNet heads weren’t being
trained correctly, and the weights weren’t chang-
ing. We verified that this is the case in the base
TRIP model, and it is because the classifier heads
are stored in a python list in the PyTorch model in-
stead of a PyTorch ModuleList. This causes the
parameters to be incorrectly tracked, and as such,
the optimizer isn’t aware of the parameters stored



in the python list. Changing the list doesn’t signif-
icantly alter the TRIP paper results in the limited
tests we had time to run, and we have notified the
authors.

4 Evaluation and Discussion

4.1 Data

The dataset used will be the one collected in the
paper (Storks et al., 2021). The data is a collec-
tion of stories, where each sample contains two
similar stories, where one is implausible. There is
some subjectivity associated with common sense
and plausibility. The stories are written in a simple,
declarative form and are grounded in the physical
world to reduce subjectivity. Additionally, stories
that were incoherent or contained unrealistic ac-
tions were removed from the dataset.

These stories are collected using Amazon Me-
chanical Turk. Then a single sentence is modified
such that the sentence alone is plausible, but when
combined with the context of the whole story, it
makes the story implausible in the physical world.
The resulting dataset contains a total of 675 plausi-
ble stories and 1472 implausible stories.

The stories are annotated with labels that cover a
higher granularity than a simplified end task label.
Aside from a label for the end task of determin-
ing which story is more plausible, annotations also
exist to enable learning which pair of sentences
conflicts to cause the implausibility. A final set of
annotations describe the physical states of entities
and the effect of each sentence on these states. An
annotation of 20 physical attributes describes these
states, and these attributes capture the contradic-
tions between sentences in an individual story.

4.2 COMET Embeddings

Here, we show and discuss the results of using
COMET to compute contextual embeddings as de-
scribed in § 3.1. For simplicity, we show the results
only on the test set of the TRIP benchmark. We
run both training and evaluation using the code
base provided by Storks et al. (2021) to ensure
fair comparison with their published results. Since
COMET is abased on GPT-2 small, it would be
unfair to compare with RoBERTa-large and BERT-
large since these contain many more parameters.
Therefore, we also include the results from both
RoBERTa-base and BERT-base. Table 1 shows the
results when using different contextual embeddings
models including COMET.

Based on the results, we have two observations.
First, we can see that max pooling is performing
much better that average pooling (∼16 accuracy
points difference), which points to the significant
effect that the way embeddings are extracted has
over the task performance. Second, we can see
that the best COMET model is outperforming both
RoBERTa and BERT base in terms of accuracy
but underperforms then in both verifiability and
consistency. This could indicate that the way we
are currently integrating COMET into the pipeline
may not be the optimal approach to leverage the
commonsense knowledge existing in COMET. A
potential future work is to think of different ways to
integrate COMET into the pipeline. One possible
direction is similar to (Bosselut et al., 2021) who
use COMET to generate a commonsense graph
of the story entities in an on-the-fly fashion, and
then reasoning is performed on top of the generated
graph.

4.3 Transfer Learning from Goal-step
Reasoning

Here, we explore the results of domain transfer
from a relevant reasoning task. As explained in
§ 3.2, we choose the goal inference task (Zhang
et al., 2020) as our pre-training task, which involves
predicting the correct goal of a given action or step.
Our approach here is fairly simple; We first fine-
tune a language model (we experiment with both
BERT and RoBERTa) on the goal inference task,
then we fine-tune it on the TRIP data.

To fine-tune on the goal-inference task, we use
the training set of the WikiHow data collected by
Zhang et al. (2020). The training set includes ∼
185K instances in the form of multiple-choice ques-
tions (MCQ), where given a step and four possible
goal choices. The model is required to select the
correct goal out of the four given choices.

To fine-tune on the WikiHow dataset, we use
the same setting as in (Zhang et al., 2020). That
is, we fine-tune for 3 epochs, with a learning rate
of 5 × 10−5 and a maximum sequence length of
200 tokens. Table 2 shows the performance with
and without pre-training on the WikiHow dataset
for both RoBERTa and BERT base models. We
can see that the RoBERTa (WikiHow) model is
performing comparably to vanilla RoBERTa while
outperforming it in accuracy. On the other hand,
we see that the BERT (WikiHow) model is per-
forming much worse than the vanilla BERT. One



Model Accuracy (%) Verifiability (%) Consistency (%)
Random 49.5 0.0 10.7

BERT-Large 70.9 8.3 21.9
RoBERTa-Large 75.2 5.7 18.8
RoBERTa-Base 72.4 6.3 22.50

BERT-Base 72.1 4.8 16.52
COMET (average pooling) 58.9 0.0 1.2
COMET (max pooling) 74.35 2.84 11.7

Table 1: Results on the TRIP test set with different contextual embedding models including COMET.

possible explanation for this drastic drop in perfor-
mance with BERT is that BERT may be more sus-
ceptible to catastrophic forgetting than RoBERTa,
and therefore fine-tuning on WikiHow could have
erased some of the pre-training knowledge that
BERT originally had, causing it to perform much
worse on other tasks. Further analysis, however, is
needed to confirm this.

In the end, we see that pre-training on the goal-
step reasoning task did not provide much benefit
as we initially expected. We argue that this may
be attributed to the nature of the GSR task, which
is framed as in an MCQ fashion. The task may
be too easy for the model that performing well
on this task does not really imbue the model with
more reasoning capabilities. We hypothesize that
leveraging the WikiHow data in creating a better,
more informative, pre-training task.

4.4 EntNet Discussion

The EntNet results (Table 3) show significantly
worse performance over the original TRIP baseline.
We compare results between EntNet with reshaped
and original embeddings, and additionally to the
RoBERTa-large TRIP baseline model. All results
are from the omit-story-loss method of training.
Initially, we thought this might be due to reshap-
ing the input embeddings such that the data was
no longer coherent enough for the model to learn.
However, the poor performance has carried over
even when using the original embeddings; in fact,
consistency is worse with the original embeddings
(0.05% and 0.00%). I would suspect this is due to
using the Stochastic Gradient Descent optimizer
over the AdamW optimizer in the original code,
as the base model shouldn’t be affected by other
implemented changes. Although only over two
epochs, the training output shows a slight improve-
ment, so modifying the learning rate or training for
longer may be all that is required.

The EntNet heads may not be performing well
for several reasons. As discussed above, modifi-
cations to the model outlined in the paper to work
with the TRIP task may have reduced performance.
Additionally, the small hidden size and the small
number of memory cells may be causing problems.
Ideally, EntNet would run with as many memory
cells as entities in the stories. The model is also
only trained for two epochs, and we may see some
slight improvements with more training or a better
optimizer.

While this approach set out to investigate
whether verifiability could be improved by imple-
menting memory into the state classifier heads, fur-
ther experiments are needed to make a full conclu-
sion. Given more time, there are a few avenues that
we would take to conclude. We think that instead
of using small EntNet heads as classifiers, it would
be worth implementing a larger EntNet model and
using this to predict for all attributes instead of one
head per attribute. We also think it would be worth
investigating using a separate embedding solely for
the EntNet section, such as the encoding outlined
in the original EntNet paper. This implementa-
tion may also use less memory than having several
smaller EntNet heads.

Additionally, if the memory usage can be re-
solved, it would be valuable to rerun the experi-
ments with the AdamW optimizer and the maxi-
mum ten epochs, as defined in the original Jupyter
Notebook TRIP configuration. It would also be
worth looking at other loss configurations as we
only tested the omit story choice loss configuration.

An even more straightforward approach would
be to investigate varying the learning rate of the
SGD optimizer or training for more epochs given
more time.



Model Accuracy (%) Verifiability (%) Consistency (%)
Random 49.5 0.0 10.7

RoBERTa-Base 72.4 6.3 22.50
BERT-Base 72.1 4.8 16.52

RoBERTa (WikiHow) 74.9 5.1 21.4
BERT (WikiHow) 38.2 0.0 0.0

Table 2: Results on the TRIP test set with different contextual embedding models including COMET.

Model Accuracy (%) Verifiability (%) Consistency (%)
RoBERTa-Large 73.6 10.6 22.4

EntNet (Reshaped Embeddings) 40.7 0.0 0.05
EntNet (Original Embedding Shapes) 40.2 0.0 0.0

Table 3: Results on the TRIP test set comparing EntNet with different embedding shapes and with the RoBERTa
large. All results from the omit story choice loss configuration.

5 Conclusion

In this project, we explored three approaches to
improve verifiability and consistency for TRIP.
The first approach relied on commonsense embed-
dings extracted from a pre-trained commonsense
language model. The second approach relied on
transfer learning by pre-training on a relevant task,
namely Goal-step reasoning. The final approach
relied on Recurrent Entity Networks (EntNet) for
precondition and effect classification of entities.
The first two approach show performance gains in
terms of accuracy but performance drop with re-
spect to both verifiability and consistency. While
the EntNet approach has led to significant decreases
in performance, we believe this is due to limitations
that had to be implemented to the training pipeline
to conserve GPU memory. We have outlined fu-
ture avenues to confirm this and described how the
model and training could be modified to produce
more reliable results given more time.

6 Work Division

Table 4 shows the contribution of each team mem-
ber to the project.

References
Antoine Bosselut, Ronan Le Bras, and Yejin Choi. 2021.

Dynamic neuro-symbolic knowledge graph construc-
tion for zero-shot commonsense question answering.
In Proceedings of the 35th AAAI Conference on Arti-
ficial Intelligence (AAAI).

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.

Member Contribution
Muhammad Khalifa Implementation and evaluation

of: COMET Embeddings, do-
main transfer from WikiHow -
Writing of sections (§ 1, § 3.1,
§ 3.2, § 4.2, § 4.3)

James Tavernor Implementation and evaluation
of EntNet model - Writing of
sections (Abstract, § 2, § 3.4,
§ 3.5, § 3.6, § 3.7, § 4.1, § 4.4.

Table 4: Work Division.

2019. COMET: commonsense transformers for auto-
matic knowledge graph construction. In Proceedings
of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4762–4779. Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine
Bordes, and Yann LeCun. 2017. Tracking the world
state with recurrent entity networks.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651–3657, Florence, Italy. Association for
Computational Linguistics.

Tassilo Klein and Moin Nabi. 2021. Towards zero-
shot commonsense reasoning with self-supervised
refinement of language models. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 8737–8743, Online and

https://doi.org/10.18653/v1/p19-1470
https://doi.org/10.18653/v1/p19-1470
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1612.03969
http://arxiv.org/abs/1612.03969
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://aclanthology.org/2021.emnlp-main.688
https://aclanthology.org/2021.emnlp-main.688
https://aclanthology.org/2021.emnlp-main.688


Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A Smith, and Yejin Choi. 2019.
Atomic: An atlas of machine commonsense for if-
then reasoning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
3027–3035.

Shane Storks, Qiaozi Gao, Yichi Zhang, and Joyce Chai.
2021. Tiered reasoning for intuitive physics: Toward
verifiable commonsense language understanding.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim, Ben-
jamin Van Durme, Samuel R. Bowman, Dipanjan
Das, and Ellie Pavlick. 2019. What do you learn
from context? probing for sentence structure in con-
textualized word representations.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M. Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks.

Li Zhang, Qing Lyu, and Chris Callison-Burch. 2020.
Reasoning about goals, steps, and temporal ordering
with wikihow. arXiv preprint arXiv:2009.07690.

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2109.04947
http://arxiv.org/abs/2109.04947
http://arxiv.org/abs/1905.06316
http://arxiv.org/abs/1905.06316
http://arxiv.org/abs/1905.06316
http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1502.05698

